[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Data Mining Techniques to Support Breast Cancer Diagnosis

  • Conference paper
New Contributions in Information Systems and Technologies

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 353))

Abstract

More than ever, in breast cancer research, many computer aided diagnostic systems have been developed in order to reduce false-positives diagnosis. In this work, we present a data mining based approach which might support oncologists in the process of breast cancer classification and diagnose. A reliable database with 410 images was used containing microcalcifications, masses and also normal tissue findings. We applied two feature extraction techniques, specifically the gray level co-occurrence matrix and the gray level run length matrix, and for classification purposes several data mining classifiers were also used. The results revealed great percentages of positive predicted value (approximately 70%) and very good accuracy values in terms of distinction of mammographic findings (>65%) and classification of BI-RADS® scale (>75%). The best predictive method and the best performance on the distinction of microcalcifications found was the Random Forest classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 251.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. LPCC. Liga Portuguesa Contra o Cancro (February 13, 2014), http://www.ligacontracancro.pt/gca/index.php?id=14

  2. Bray, F., Ren, J.S., Masuyer, E., Ferlay, J.: Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International Journal of Cancer 132(5), 1133–1145 (2013)

    Article  Google Scholar 

  3. Kumar, V., Abbas, A.K., Fausto, N., Aster, J.: Robbins and Cotran Pathologic Basis of Disease. Professional Edition: Expert Consult-Online. Elsevier Health Sciences (2009)

    Google Scholar 

  4. Khatib, O.M., Modjtabai, A.: Guidelines for the early detection and screening of breast cancer: EMRO Technical publications Series 30. World Health Organization (2006)

    Google Scholar 

  5. Health NIo. Breast Cancer. ADAM Medical Encyclopedia: PubMed Health (2012)

    Google Scholar 

  6. Society AC. American Cancer Society: Breast Cancer detailed guide2013, http://www.cancer.org/cancer/breastcancer/

  7. Force UPST. Screening for breast cancer: US Preventive Services Task Force recommendation statement 151(10), 716 (2009)

    Google Scholar 

  8. Radiology ACo. ACR BI-RADS® Atlas: American College of Radiology(February 02, 2014), http://www.acr.org/Quality-Safety/Resources/BIRADS/About-BIRADS

  9. Boyd, N.F., Martin, L.J., Bronskill, M., Yaffe, M.J., Duric, N., Minkin, S.: Breast tissue composition and susceptibility to breast cancer. Journal of the National Cancer Institute (2010)

    Google Scholar 

  10. Boyd, N.F., Martin, L.J., Yaffe, M.J., Minkin, S.: Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Research 13(6), 223 (2011)

    Article  Google Scholar 

  11. Wang, A.T., Vachon, C.M., Brandt, K.R., Ghosh, K. (eds.): Breast Density and Breast Cancer Risk: A Practical Review. Mayo Clinic Proceedings. Elsevier (2014)

    Google Scholar 

  12. Gierach, G.L., Ichikawa, L., Kerlikowske, K., Brinton, L.A., Farhat, G.N., Vacek, P.M., et al.: Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. Journal of the National Cancer Institute (2012)

    Google Scholar 

  13. Malucelli, A., Stein, J.A., Bastos, L., Carvalho, D., Cubas, M.R., Paraíso, E.C.: Classification of risk micro-areas using data mining. Revista de saude publica 44(2), 292–300 (2010)

    Article  Google Scholar 

  14. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.: INbreast: toward a full-field digital mammographic database. Academic Radiology 19(2), 236–248 (2012)

    Article  Google Scholar 

  15. Teixeira, R.: Automatic Analysis of Mammography Images: Classification of Breast Density: MSc Dissertation; Universidade do Porto (2013)

    Google Scholar 

  16. Suri, J.S., Wilson, D.L., Laxminarayan, S.: Handbook of biomedical image analysis. Springer (2005)

    Google Scholar 

  17. Carneiro, P.: e A Patrocínio. Análise de atributos de intensidade e textura na classificação de densidade mamária. XXIV Congresso Brasileiro de Engenharia Biomédica (CBEB), Brazil (2014)

    Google Scholar 

  18. Meselhy, E.M., Faye, I., Belhaouari, S.B.: A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Computers in Biology and Medicine 42(1), 123–128 (2012)

    Article  Google Scholar 

  19. Mohanty, A.K., Senapati, M.R., Beberta, S., Lenka, S.: Texture-based features for classification of mammograms using decision tree. Neural Computing and Applications 23(3-4), 1011–1017 (2013)

    Article  Google Scholar 

  20. Chen, C.-H., Pau, L.-F., Wang, P.S.: Handbook of pattern recognition and computer vision. World Scientific (2010)

    Google Scholar 

  21. Nanni, L., Brahnam, S., Ghidoni, S., Menegatti, E., Barrier, T.: Different approaches for extracting information from the co-occurrence matrix. PloS One 8(12), e83554 (2013)

    Google Scholar 

  22. Da Fonseca, J.L., Cardoso, J.S., Domingues, I.: Pre-CADs in Breast Cancer. Idea 2(3) (2013)

    Google Scholar 

  23. Domingues, I., Sales, E., et al.: Inbreast-Database masses characterization. XXIII CBEB; Brazil (2012)

    Google Scholar 

  24. Bueno, G., et al.: Automatic breast parenchymal density classification integrated into a CADe system. International Journal of Computer Assisted Radiology and Surgery 6(3), 309–318 (2011)

    Article  Google Scholar 

  25. Ramos-Pollán et al.: Discovering mammography-based machine learning classifiers for breast cancer diagnosis. Journal of Medical Systems 36(4), 2259–2269 (2012)

    Google Scholar 

  26. Lacquement, M.A., Mitchell, D., Hollingsworth, A.B.: Positive predictive value of the breast imaging reporting and data system. Journal of the American College of Surgeons 189(1), 34–40 (1999)

    Article  Google Scholar 

  27. Obenauer, S., Hermann, K., Grabbe, E.: Applications and literature review of the BI-RADS classification. European Radiology 15(5), 1027–1036 (2005)

    Article  Google Scholar 

  28. Amendolia, S.R., Bisogni, M.G., Bottigli, U., Ceccopieri, A., Delogu, P., Dipasquale, G., et al.: The CALMA project. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 461(1), 428–429 (2001)

    Article  Google Scholar 

  29. Bellotti, R., Bagnasco, S., Bottigli, U., Castellano, M., Cataldo, R., Catanzariti, E., et al.: The MAGIC-5 Project: medical applications on a GRID infrastructure connection. In: 2004 IEEE Nuclear Science Symposium Conference Record, IEEE (2004)

    Google Scholar 

  30. Matheus, B., Schiabel, H.: A CADx Scheme in Mammography: Considerations on a Novel Approach. ADVCOMP 2013. In: The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Diz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Diz, J., Marreiros, G., Freitas, A. (2015). Using Data Mining Techniques to Support Breast Cancer Diagnosis. In: Rocha, A., Correia, A., Costanzo, S., Reis, L. (eds) New Contributions in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-319-16486-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16486-1_68

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16485-4

  • Online ISBN: 978-3-319-16486-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics