[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Compressed Indexing for Approximate Top-k String Retrieval

  • Conference paper
String Processing and Information Retrieval (SPIRE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8799))

Included in the following conference series:

Abstract

Given a collection of strings (called documents), the top-k document retrieval problem is that of, given a string pattern p, finding the k documents where p appears most often. This is a basic task in most information retrieval scenarios. The best current implementations require 20–30 bits per character (bpc) and k to 4k microseconds per query, or 12–24 bpc and 1–10 milliseconds per query. We introduce a Lempel-Ziv compressed data structure that occupies 5–10 bpc to answer queries in around k microseconds. The drawback is that the answer is approximate, but we show that its quality improves asymptotically with the size of the collection, reaching over 85% of the accumulated term frequency of the real answer already for patterns of length 4–6 on rather small collections, and improving for larger ones.

Partially funded by Fondecyt grant 1-140796, Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice. In: Proc. ALENEX, pp. 84–97 (2010)

    Google Scholar 

  2. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed text indexing. Algorithmica 62(1), 54–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferrada, H., Navarro, G.: A Lempel-Ziv compressed structure for document listing. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 116–128. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Hon, W.-K., Patil, M., Shah, R., Wu, S.-B.: Efficient index for retrieving top-k most frequent documents. J. Discr. Alg. 8(4), 402–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hon, W.-K., Shah, R., Thankachan, S.V.: Towards an optimal space-and-query-time index for top-k document retrieval. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 173–184. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Hon, W.-K., Shah, R., Vitter, J.: Space-efficient framework for top-k string retrieval problems. In: Proc. FOCS, pp. 713–722 (2009)

    Google Scholar 

  7. Konow, R., Navarro, G.: Faster compact top-k document retrieval. In: Proc. DCC, pp. 351–360 (2013)

    Google Scholar 

  8. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv algorithms. SIAM J. Comp. 29(3), 893–911 (1999)

    Article  MathSciNet  Google Scholar 

  9. Munro, I.: Tables. In: Proc. FSTTCS, pp. 37–42 (1996)

    Google Scholar 

  10. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discr. Alg. 2(1), 87–114 (2004)

    Article  MATH  Google Scholar 

  11. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document retrieval on sequences. ACM Comp. Surv. 46(4), article 52 (2014)

    Google Scholar 

  12. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear space. In: Proc. SODA, pp. 1066–1077 (2012)

    Google Scholar 

  13. Navarro, G., Valenzuela, D.: Space-efficient top-k document retrieval. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 307–319. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Clarke, C., Büttcher, S., Cormack, G.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press (2010)

    Google Scholar 

  15. Szpankowski, W.: A generalized suffix tree and its (un)expected asymptotic behaviors. SIAM J. Comp. 22(6), 1176–1198 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferrada, H., Navarro, G. (2014). Efficient Compressed Indexing for Approximate Top-k String Retrieval. In: Moura, E., Crochemore, M. (eds) String Processing and Information Retrieval. SPIRE 2014. Lecture Notes in Computer Science, vol 8799. Springer, Cham. https://doi.org/10.1007/978-3-319-11918-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11918-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11917-5

  • Online ISBN: 978-3-319-11918-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics