Abstract
Conditional functional dependency (CFD) on a relation schema is an important technique of data consistency analysis. However, huge number of CFD rules will lead to lower the efficiency of data cleaning. Thus, we hope to reduce the number of rules by raising support degree of CFD. As a result, some crucial rules may be discarded and the accuracy of data cleaning will be decreasesd. Hence, in this paper, we present a new type of rules which combines the condition values. Using the rules, we can reduce the number of CFD rules and maintain the accuracy of data cleaning. We also propose 1) a 2- process search strategy to discover the combined condition rules, 2) the method of combining the CFD rules by combining the inconflict values and 3) pruning method to improve efficiency of the search. Finally, Our experiments show the efficiency and effectiveness of our solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fan, W., Geerts, F.: Foundations of data quality management. Synthesis Lectures on Data Management 4(5), 1–217 (2012)
Huhtala, Y., Karkkainen, J.: Porkka.: Efficient discovery of functional and approximate dependencies using partitions. In: Proceedings of Data Engineering, pp. 392–401. IEEE (1998)
Asuncion, A., Newman, D.J.: Uci machine learning repository (2007)
Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies and armstrong relations. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000)
Wyss, C., Giannella, C., Robertson, E.: FastFDs: A heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances - extended abstract. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 101–110. Springer, Heidelberg (2001)
Savnik, I., Flach, P.A.: Discovery of multivalued dependencies from relations. Intelligent Data Analysis 4(3), 195–211 (2000)
Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations. Theoretical Computer Science 149(1), 129–149 (1995)
Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: Data Engineering, ICDE 2007, pp. 746–755. IEEE (2007)
Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional dependencies. TKDE 23(5), 683–698 (2011)
Chiang, F., Miller, R.: Discovering data quality rules. In: VLDB (2008)
Agrawal, R., Imieli′nski, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Record 22, 207–216 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Du, Y., Shen, D., Nie, T., Kou, Y., Yu, G. (2014). Discovering Condition-Combined Functional Dependency Rules. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds) Web Technologies and Applications. APWeb 2014. Lecture Notes in Computer Science, vol 8709. Springer, Cham. https://doi.org/10.1007/978-3-319-11116-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-11116-2_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11115-5
Online ISBN: 978-3-319-11116-2
eBook Packages: Computer ScienceComputer Science (R0)