[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Preparing Relational Algebra for “Just Good Enough” Hardware

  • Conference paper
Relational and Algebraic Methods in Computer Science (RAMICS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8428))

Abstract

Device miniaturization is pointing towards tolerating imperfect hardware provided it is “good enough”. Software design theories will have to face the impact of such a trend sooner or later.

A school of thought in software design is relational: it expresses specifications as relations and derives programs from specifications using relational algebra.

This paper proposes that linear algebra be adopted as an evolution of relational algebra able to cope with the quantification of the impact of imperfect hardware on (otherwise) reliable software.

The approach is illustrated by developing a monadic calculus for component oriented software construction with a probabilistic dimension quantifying (by linear algebra) the propagation of imperfect behaviour from lower to upper layers of software systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backhouse, R., Michaelis, D.: Exercises in quantifier manipulation. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 69–81. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Barbosa, L.: Towards a Calculus of State-based Software Components. JUCS 9(8), 891–909 (2003)

    Google Scholar 

  3. Barbosa, L., Oliveira, J.: Transposing Partial Components — An Exercise on Coalgebraic Refinement. Theor. Comp. Sci. 365(1), 2–22 (2006), http://dx.doi.org/10.1016/j.tcs.2006.07.030

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Categorical Homology Theory. Lecture Notes in Mathematics, vol. 80, pp. 119–140. Springer (1969)

    Google Scholar 

  5. Bird, R., de Moor, O.: Algebra of Programming. Series in Computer Science. Prentice-Hall International (1997)

    Google Scholar 

  6. Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic perspective on linear weighted automata. Inf. & Comp. 211, 77–105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational methods in computer science. Springer-Verlag New York, Inc., New York (1997)

    MATH  Google Scholar 

  8. Coecke, B. (ed.): New Structures for Physics. Lecture Notes in Physics, vol. 831. Springer (2011)

    Google Scholar 

  9. Cortellessa, V., Grassi, V.: A modeling approach to analyze the impact of error propagation on reliability of component-based systems. In: Schmidt, H.W., Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 140–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Erwig, M., Kollmansberger, S.: Functional pearls: Probabilistic functional programming in Haskell. J. Funct. Program. 16, 21–34 (2006)

    Article  MATH  Google Scholar 

  11. Frias, M., Baum, G., Haeberer, A.: Fork algebras in algebra, logic and computer science. Fundam. Inform., 1–25 (1997)

    Google Scholar 

  12. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Methods in Computer Science 3(4), 1–36 (2007)

    Article  MathSciNet  Google Scholar 

  13. Kahl, W.: Refinement and development of programs from relational specifications. ENTCS 44(3), 4.1–4.43 (2003)

    Google Scholar 

  14. Kerstan, H., König, B.: Coalgebraic trace semantics for probabilistic transition systems based on measure theory. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 410–424. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23(1), 113–120 (1972), http://dx.doi.org/10.1007/BF01304852

    Article  MATH  MathSciNet  Google Scholar 

  16. Lingamneni, A., Enz, C., Palem, K., Piguet, C.: Synthesizing parsimonious inexact circuits through probabilistic design techniques. ACM Trans. Embed. Comput. Syst. 12(2s), 93:1–93:26 (2013)

    Google Scholar 

  17. Macedo, H., Oliveira, J.: Typing linear algebra: A biproduct-oriented approach. Science of Computer Programming 78(11), 2160–2191 (2013)

    Article  Google Scholar 

  18. Marić, O., Sprenger, C.: Verification of a transactional memory manager under hardware failures and restarts (2013), conference paper (submitted)

    Google Scholar 

  19. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer (2005)

    Google Scholar 

  20. Murta, D., Oliveira, J.N.: Calculating risk in functional programming. CoRR abs/1311.3687 (2013)

    Google Scholar 

  21. Oliveira, J.: Towards a linear algebra of programming. Formal Aspects of Computing 24(4-6), 433–458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oliveira, J.: Weighted automata as coalgebras in categories of matrices. Int. Journal of Found. of Comp. Science 24(06), 709–728 (2013)

    Article  MATH  Google Scholar 

  23. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)

    Google Scholar 

  24. Rutten, J.: Universal coalgebra: A theory of systems. Theor. Comp. Sci. 249(1), 3–80 (2000); Revised version of CWI Techn. Rep. CS-R9652 (1996)

    Google Scholar 

  25. Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and its Applications, vol. 132. Cambridge University Press (November 2010)

    Google Scholar 

  26. Sokolova, A.: Probabilistic systems coalgebraically: A survey. Theor. Comput. Sci. 412(38), 5095–5110 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stamatelatos, M., Dezfuli, H.: Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, NASA/SP-2011-3421, 2nd edn (December 2011)

    Google Scholar 

  28. Tanaka, M.: Pseudo-Distributive Laws and a Unified Framework for Variable Binding. Ph.D. thesis, School of Informatics, University of Edinburgh (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliveira, J.N. (2014). Preparing Relational Algebra for “Just Good Enough” Hardware. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2014. Lecture Notes in Computer Science, vol 8428. Springer, Cham. https://doi.org/10.1007/978-3-319-06251-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06251-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06250-1

  • Online ISBN: 978-3-319-06251-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics