[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ClusterFace: Clustering-Driven Deep Face Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10996))

Included in the following conference series:

  • 3359 Accesses

Abstract

Recent years, image-based 2D face recognition has achieved human-level performance with the big breakthrough of deep learning paradigm. However, almost all of the existing deep face recognition methods depend on millions and millions of labeled 2D face images from different individual for supervised deep learning. In this case, face labelling becomes the pain point of deep face recognition. To solve this issue, we propose a novel clustering driven unsupervised deep face recognition framework, namely ClusterFace. In particular, our framework firstly assume that we already have a well-trained deep face model and a large number of face images without any labels. Then, all these face images are represented by this deep face model and then unsupervised clustered into different clusters using a certain clustering algorithm. Finally, these clustering-based face labelling results are employed to train a new deep CNN model for face recognition. Experimental results demonstrated that the proposed framework with a simple Mini-batch K-Means clustering algorithm can achieve surprising state-of-the-art performance (99.41%) on the LFW dataset. We also presented an intuitional explanation the reason of achieving good performance of our framework and also demonstrated its robustness to the choice of the number of clusters and the amount of unlabeled face images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts (2007)

    Google Scholar 

  2. Learned-Miller, E., Huang G.B.: Labeled faces in the wild: Updates and new reporting procedures. Technical report, University of Massachusetts (2014)

    Google Scholar 

  3. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR (2014)

    Google Scholar 

  4. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  5. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  6. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: CVPR (2014)

    Google Scholar 

  7. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. Computer Science (2014)

    Google Scholar 

  8. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)

    Google Scholar 

  9. Kemelmacher, I., Shlizerman, Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: CVPR (2016)

    Google Scholar 

  10. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: A dataset for recognising faces across pose and age. CoRR (2017)

    Google Scholar 

  11. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: CVPR (2017)

    Google Scholar 

  12. Hasnat, M.A., Bohné, J., Milgram, J., Gentric, S., Chen, L.: Deepvisage: making face recognition simple yet with powerful generalization skills. In: IEEE International Conference on Computer Vision Workshops (2017)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Wang, H., Wang, Y., Zhou, Z., Ji, X., Li, Z., Gong, D., Zhou, J., Liu, W.: Cosface: large margin cosine loss for deep face recognition. In: CVPR (2018)

    Google Scholar 

  17. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  18. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  19. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML (2016)

    Google Scholar 

  20. Wu, B., Lyu, S., Hu, B., Ji, Q.: Simultaneous clustering and tracklet linking for multi-face tracking in videos. In: ICCV (2013)

    Google Scholar 

  21. Otto, C., Wang, D., Jain, A.K.: Clustering millions of faces by identity. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  22. Deng, J., Guo, J., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. CoRR (2018)

    Google Scholar 

  23. Sculley, D.: Web-scale k-means clustering. In: International Conference on World Wide Web (2010)

    Google Scholar 

  24. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23, 1499–1503 (2016)

    Article  Google Scholar 

  25. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. Publ. Am. Stat. Assoc. 78, 553–569 (1983)

    Article  Google Scholar 

  26. Alex, K., Ilya, S., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, L., Yu, C., Li, H., Zhu, J. (2018). ClusterFace: Clustering-Driven Deep Face Recognition. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97909-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97908-3

  • Online ISBN: 978-3-319-97909-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics