[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nonlinear Predictive Control for Trajectory Tracking and Path Following: An Introduction and Perspective

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

Control tasks in various applications are posed as setpoint-stabilization problems, where a constant reference has to be stabilized. For systems where changing references are given, formulations for tracking of a time-dependent trajectory or for following a geometric path are more suitable. In other cases, no clear reference is given, but only optimal economic behavior is desired. We outline how these control goals can be captured and embedded in a model predictive control design and provide theoretic formulations. We compare trajectory tracking and path following in a realistic robot simulation example to highlight that it is important for an engineer to choose the appropriate formulation of the control task at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 109.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We focus on continuous-time systems described by differential equations. Extensions towards distributed parameter systems or discrete-time systems are subject to future work, respectively, easily possible.

  2. 2.

    The class of considered input functions could be readily extended to measurable controls. Here, for the sake of simplicity, we focus on the more application relevant setting of piecewise constant control signals.

References

  1. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)

    Article  MathSciNet  Google Scholar 

  2. Akhtar, A., Waslander, S.L., Nielsen, C.: Path following for a quadrotor using dynamic extension and transverse feedback linearization. In: Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 3551–3556 (2012)

    Google Scholar 

  3. Alessandretti, A., Aguiar, A., Jones, C.: On convergence and performance certification of a continuous-time economic model predictive control scheme with time-varying performance index. Automatica 68, 305–313 (2016)

    Article  MathSciNet  Google Scholar 

  4. Amrit, R., Rawlings, J.B., Angeli, D.: Economic optimization using model predictive control with a terminal cost. Annu. Rev. Control 35(2), 178–186 (2011)

    Article  Google Scholar 

  5. Anderson, B., Moore, J.: Optimal Control - Linear Quadratic Methods. Information and System Science Series. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  6. Angeli, D., Amrit, R., Rawlings, J.B.: On average performance and stability of economic model predictive control. IEEE Trans. Autom. Control 57(7), 1615–1626 (2012)

    Article  MathSciNet  Google Scholar 

  7. Athans, M., Falb, P.: Optimal Control - An Introduction to Theory and Its Applications. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  8. Banaszuk, A., Hauser, J.: Feedback linearization of transverse dynamics for periodic orbits. Syst. Control Lett. 26(2), 95–105 (1995)

    Article  MathSciNet  Google Scholar 

  9. Bargsten, V., Zometa, P., Findeisen, R.: Modeling, parameter identification and model-based control of a lightweight robotic manipulator. In: Proceedings of the International Conference on Control Applications (CCA), pp. 134–139 (2013)

    Google Scholar 

  10. Böck, M., Kugi, A.: Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans. Control Syst. Technol. 22(4), 1461–1473 (2014)

    Article  Google Scholar 

  11. Böck, M., Kugi, A.: Constrained model predictive manifold stabilization based on transverse normal forms. Automatica 74, 315–326 (2016)

    Article  MathSciNet  Google Scholar 

  12. Böhm, C., Findeisen, R., Allgöwer, F.: Avoidance of poorly observable trajectories: a predictive control perspective. IFAC Proc. Vol. 41(2), 1952–1957 (2008)

    Article  Google Scholar 

  13. Chen, X., Heidarinejad, M., Liu, J., Christofides, P.D.: Distributed economic MPC: application to a nonlinear chemical process network. J. Process Control 22(4), 689–699 (2012)

    Article  Google Scholar 

  14. Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Autom. Control 56(3), 703–707 (2011)

    Article  MathSciNet  Google Scholar 

  15. Do, K.D., Jiang, Z.P., Pan, J.: Robust adaptive path following of underactuated ships. Automatica 40(6), 929–944 (2004)

    Article  MathSciNet  Google Scholar 

  16. El Ghoumari, M., Tantau, H.J., Serrano, J.: Nonlinear constrained MPC: real-time implementation of greenhouse air temperature control. Comput. Electron. Agric. 49(3), 345–356 (2005)

    Article  Google Scholar 

  17. Ellis, M., Durand, H., Christofides, P.: A tutorial review of economic model predictive control methods. J. Process Control 24(8), 1156–1178 (2014)

    Article  Google Scholar 

  18. Faulwasser, T.: Optimization-Based Solutions to Constrained Trajectory-Tracking and Path-Following Problems. Number 3 in Contributions in Systems Theory and Automatic Control. Shaker Verlag, Herzogenrath, Otto-von-Guericke University Magdeburg (2013)

    Google Scholar 

  19. Faulwasser, T., Bonvin, D.: On the design of economic NMPC based on an exact turnpike property. In: Proceedings of the 9th IFAC Symposium on Advanced Control of Chemical Process (ADCHEM), pp. 525–530 (2015)

    Google Scholar 

  20. Faulwasser, T., Bonvin, D.: On the design of economic NMPC based on approximate turnpike properties. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC), pp. 4964–4970 (2015)

    Google Scholar 

  21. Faulwasser, T., Findeisen, R.: A predictive control approach to trajectory tracking problems via time-varying level sets of Lyapunov functions. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC/ECC), pp. 3381–3386 (2011)

    Google Scholar 

  22. Faulwasser, T., Findeisen, R.: Nonlinear model predictive control for constrained output path following. IEEE Trans. Autom. Control 61(4), 1026–1039 (2016)

    Article  MathSciNet  Google Scholar 

  23. Faulwasser, T., Grüne, L., Müller, M.A.: Economic nonlinear model predictive control. Found. Trends Syst. Control, 5(1), 1–94 (2018)

    Google Scholar 

  24. Faulwasser, T., Kern, B., Findeisen, R.: Model predictive path-following for constrained nonlinear systems. In: Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (CDC/CCC), pp. 8642–8647 (2009)

    Google Scholar 

  25. Faulwasser, T., Hagenmeyer, V., Findeisen, R.: Constrained reachability and trajectory generation for flat systems. Automatica 50(4), 1151–1159 (2014)

    Article  MathSciNet  Google Scholar 

  26. Faulwasser, T., Weber, T., Zometa, J.P., Findeisen, R.: Implementation of nonlinear model predictive path-following control for an industrial robot. IEEE Trans. Control Syst. Technol. 25(4), 1505–1511 (2016)

    Article  Google Scholar 

  27. Faulwasser, T., Korda, M., Jones, C.N., Bonvin, D.: On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica 81, 297–304 (2017)

    Article  MathSciNet  Google Scholar 

  28. Findeisen, R.: Nonlinear model predictive control: a sampled-data feedback perspective. Fortschr.-Ber. VDI, Reihe 8, Nr. 1087. VDI Verlag, Düsseldorf (2006)

    Google Scholar 

  29. Findeisen, R., Chen, H., Allgöwer, F.: Nonlinear predictive control for setpoint families. In: Proceedings of the IEEE American Control Conference (ACC), pp. 260–264 (2000)

    Google Scholar 

  30. Findeisen, R., Raff, T., Allgöwer, F.: Sampled-data nonlinear model predictive control for constrained continuous time systems. In: Tarbouriech, S., Garcia, G., Glattfelder, A.H. (eds.) Advanced Strategies in Control Systems with Input and Output Constraints. Lecture Notes in Control and Information Sciences, vol. 346, pp. 207–235. Springer, Berlin (2007)

    Chapter  Google Scholar 

  31. Flixeder, S., Glück, T., Böck, M., Kugi, A.: Combined path following and compliance control with application to a biaxial gantry robot. In: Proceedings of the IEEE Conference on Control Applications (CCA), pp. 796–801 (2014)

    Google Scholar 

  32. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model predictive controllers. Syst. Control Lett. 42(2), 127–143 (2001)

    Article  MathSciNet  Google Scholar 

  33. Grüne, L.: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J. Control Optim. 48(2), 1206–1228 (2009)

    Article  MathSciNet  Google Scholar 

  34. Grüne, L.: Economic receding horizon control without terminal constraints. Automatica 49(3), 725–734 (2013)

    Article  MathSciNet  Google Scholar 

  35. Grüne, L., Müller, M.A.: On the relation between strict dissipativity and turnpike properties. Syst. Control Lett. 90, 45–53 (2016)

    Article  MathSciNet  Google Scholar 

  36. Grüne, L., Stieler, M.: Asymptotic stability and transient optimality of economic MPC without terminal conditions. J. Process Control 24(8), 1187–1196 (2014)

    Article  Google Scholar 

  37. Halvgaard, R., Poulsen, N.K., Madsen, H., Jörgensen, J.B.: Economic model predictive control for building climate control in a smart grid. In: Proceedings of the IEEE Conference on Innovative Smart Grid Technologies, pp. 1–6 (2012)

    Google Scholar 

  38. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905–920 (2004)

    Article  Google Scholar 

  39. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, Berlin (1995)

    Book  Google Scholar 

  40. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Autom. Control 50(5), 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  41. Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlinear MPC for trajectory tracking applied to rotary wing micro aerial vehicles. In: Proceedings of 19th IFAC World Congress, pp. 3518–3524 (2017)

    Google Scholar 

  42. Kern, B., Böhm, C., Findeisen, R., Allgöwer, F.: Receding horizon control for linear periodic time-varying systems subject to input constraints. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control, pp. 109–117. Springer, Berlin (2009)

    Chapter  Google Scholar 

  43. Kühne, F., Lages, W.F., da Silva Jr., J.M.G.: Mobile robot trajectory tracking using model predictive control. In: Proceedings of the 2nd IEEE Latin-American Robotics Symposium (2005)

    Google Scholar 

  44. Lam, D., Manzie, C., Good, M.: Application of model predictive contouring control to an X-Y table. In: Proceedings of the 18th IFAC World Congress, pp. 10325–10330 (2011)

    Google Scholar 

  45. Limon, D., Alamo, T.: Tracking model predictive control. In: Baillieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control, pp. 1475–1484. Springer, Berlin (2015)

    Chapter  Google Scholar 

  46. Limon, D., Alamo, T., Salas, F., Camacho, E.F.: On the stability of constrained MPC without terminal constraint. IEEE Trans. Autom. Control 51(5), 832–836 (2006)

    Article  MathSciNet  Google Scholar 

  47. Limon, D., Alvarado, I., Alamo, T., Camacho, E.F.: MPC for tracking piecewise constant references for constrained linear systems. Automatica 44(9), 2382–2387 (2008)

    Article  MathSciNet  Google Scholar 

  48. Limon, D., Pereira, M., de la Peña, D.M., Alamo, T., Jones, C.N., Zeilinger, M.N.: MPC for tracking periodic references. IEEE Trans. Autom. Control 61(4), 1123–1128 (2016)

    Article  MathSciNet  Google Scholar 

  49. Maeder, U., Morari, M.: Offset-free reference tracking with model predictive control. Automatica 46(9), 1469–1476 (2010)

    Article  MathSciNet  Google Scholar 

  50. Magni, L., De Nicolao, G., Scattolini, R.: Output feedback and tracking of nonlinear systems with model predictive control. Automatica 37(10), 1601–1607 (2001)

    Article  Google Scholar 

  51. Maree, J., Imsland, L.: Combined economic and regulatory predictive control. Automatica 69, 342–347 (2016)

    Article  MathSciNet  Google Scholar 

  52. Matschek, J., Bethge, J., Zometa, P., Findeisen, R.: Force feedback and path following using predictive control: concept and application to a lightweight robot. In: Proceedings of 19th IFAC World Congress, pp. 10243–10248 (2017)

    Google Scholar 

  53. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Autom. Control 35(7), 814–824 (1990)

    Article  MathSciNet  Google Scholar 

  54. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  55. Müller, M.A., Grüne, L.: Economic model predictive control without terminal constraints: optimal periodic operation. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC), pp. 4946–4951 (2015)

    Google Scholar 

  56. Müller, M.A., Angeli, D., Allgöwer, F.: On necessity and robustness of dissipativity in economic model predictive control. IEEE Trans. Autom. Control 60(6), 1671–1676 (2015)

    Article  MathSciNet  Google Scholar 

  57. Nielsen, C., Maggiore, M.: Output stabilization and maneuver regulation: a geometric approach. Syst. Control Lett. 55, 418–427 (2006)

    Article  MathSciNet  Google Scholar 

  58. Nielsen, C., Maggiore, M.: On local transverse feedback linearization. SIAM J. Control Optim. 47, 2227–2250 (2008)

    Article  MathSciNet  Google Scholar 

  59. Nielsen, C., Fulford, C., Maggiore, M.: Path following using transverse feedback linearization: application to a maglev positioning system. Automatica 46(3), 585–590 (2010)

    Article  MathSciNet  Google Scholar 

  60. Raković, S.V.: Robust model-predictive control. In: Baillieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control, pp. 1225–1233. Springer, Berlin (2015)

    Chapter  Google Scholar 

  61. Rawlings, J.B., Mayne, D.Q., Diehl, M.M.: Model Predictive Control: Theory, Computation, and Design, 2nd edn. Nob Hill Publishing, Madison (2017)

    Google Scholar 

  62. Rawlings, J.B., Angeli, D., Bates, C.N.: Fundamentals of economic model predictive control. In: Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 3851–3861 (2012)

    Google Scholar 

  63. Santos, L.O., Afonso, P.A., Castro, J.A., Oliveira, N.M., Biegler, L.T.: On-line implementation of nonlinear MPC: an experimental case study. Control Eng. Pract. 9(8), 847–857 (2001)

    Article  Google Scholar 

  64. Skjetne, R., Fossen, T.I., Kokotović, P.V.: Robust output maneuvering for a class of nonlinear systems. Automatica 40(3), 373–383 (2004)

    Article  MathSciNet  Google Scholar 

  65. van Duijkeren, N., Faulwasser, T., Pipeleers, G.: NMPC with economic objectives on target manifolds. In: Proceedings of the 56th IEEE Conference on Decision and Control (CDC), pp. 2519–2524 (2017)

    Google Scholar 

  66. Zanon, M., Grüne, L., Diehl, M.: Periodic optimal control, dissipativity and MPC. IEEE Trans. Autom. Control 62(6), 2943–2949 (2017)

    Article  MathSciNet  Google Scholar 

  67. Zhang, R., Xue, A., Lu, R., Li, P., Gao, F.: Real-time implementation of improved state-space MPC for air supply in a coke furnace. IEEE Trans. Ind. Electron. 61(7), 3532–3539 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

J. Matschek and R. Findeisen acknowledge support by the German Federal Ministry of Education and Research within the Forschungscampus STIMULATE under grant number 13GW0095A. T. Faulwasser acknowledges support from the Baden-Württemberg Stiftung under the Elite Programme for Postdocs.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matschek, J., Bäthge, T., Faulwasser, T., Findeisen, R. (2019). Nonlinear Predictive Control for Trajectory Tracking and Path Following: An Introduction and Perspective. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_8

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics