[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Step by Step Towards Energy-Aware Data Warehouse Design

  • Conference paper
  • First Online:
Business Intelligence (eBISS 2016)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 280))

Included in the following conference series:

Abstract

Nowadays, the electrical energy efficiency is one of the most challenging issues in the area of ITs. DBMS have been pointed out as one of the major energy consumers. The reduction of their energy consumption becomes an urgent priority. Two aspects have to be considered in order to reduce this consumption: (i) the DBMS hosting the database applications and (ii) the Eco-design of these applications. Note that the first aspect got more attention than the second one. In this paper, we attempt to consider both aspects in the context of data warehouses (\(\mathcal {DW}\)). Firstly, we propose a generic framework integrating the energy in query optimizers of DBMS hosting already designed \(\mathcal {DW}\). An instantiation of this framework has been done on PostgreSQL DBMS. Secondly, and thanks to the variability that has been widely studied by the community of software, we propose to go back to the logical phase of the \(\mathcal {DW}\) life cycle and see how the energy may be integrated and then evaluate its impact on the physical phase. This variation is possible due to the relationships (hierarchies) that may exist among the properties of that \(\mathcal {DW}\). Finally, intensive experiments are conducted to evaluate the effectiveness and efficiency of our findings on PostgreSQL and Oracle DBMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.gouvernement.fr/en/cop21.

  2. 2.

    http://climateaction.unfccc.int/assets/downloads/LPAA_-_Private_sector_engagement.pdf.

  3. 3.

    http://www.energyforall.info/.

  4. 4.

    https://energy.gov/sites/prod/files/2015/09/f26/Quadrennial-Technology-Review-2015_0.pdf.

  5. 5.

    https://www.sa.gov.au/topics/property-and-land/land-and-property-development/building-rules-regulations-and-information/sustainability-and-efficiency-regulations/government-energy-efficiency-initiatives.

  6. 6.

    http://www.lias-lab.fr/forge/projects/ecoprod.

  7. 7.

    http://www.tpc.org/tpch/.

  8. 8.

    https://www.postgresql.org/docs/current/static/executor.html.

  9. 9.

    IC specify conditions/propositions that must be maintained as true (Part.size > 0).

  10. 10.

    https://www.wattsupmeters.com/.

  11. 11.

    Java library for multi-objective evolutionary algorithms. www.moeaframework.org.

References

  1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., et al.: The beckman report on database research. Commun. ACM 59(2), 92–99 (2016)

    Article  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)

    Google Scholar 

  3. Anderlik, S., Neumayr, B., Schrefl, M.: Using domain ontologies as semantic dimensions in data warehouses. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 88–101. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4_7

    Chapter  Google Scholar 

  4. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines: Concepts and Implementation. Springer Publishing Company (2013)

    Google Scholar 

  5. Appuswamy, R., Olma, M., Ailamaki, A.: Scaling the memory power wall with dram-aware data management. In: Proceedings of the 11th International Workshop on Data Management on New Hardware, p. 3. ACM (2015)

    Google Scholar 

  6. Behzadnia, P., Yuan, W., Zeng, B., Tu, Y.-C., Wang, X.: Dynamic power-aware disk storage management in database servers. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 315–325. Springer, Cham (2016). doi:10.1007/978-3-319-44406-2_25

    Chapter  Google Scholar 

  7. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82(2), 47–111 (2011)

    Article  Google Scholar 

  8. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: ICDE, pp. 746–755 (2007)

    Google Scholar 

  9. Bouarar, S., Bellatreche, L., Jean, S., Baron, M.: Do rule-based approaches still make sense in logical data warehouse design? In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS 2014. LNCS, vol. 8716, pp. 83–96. Springer, Cham (2014). doi:10.1007/978-3-319-10933-6_7

    Google Scholar 

  10. Bouarar, S., Bellatreche, L., Roukh, A.: Eco-data warehouse design through logical variability. In: Steffen, B., Baier, C., Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 436–449. Springer, Cham (2017). doi:10.1007/978-3-319-51963-0_34

    Chapter  Google Scholar 

  11. Boukorca, A., Bellatreche, L., Senouci, S.B., Faget, Z.: Coupling materialized view selection to multi query optimization: Hyper graph approach. IJDWM 11(2), 62–84 (2015)

    Google Scholar 

  12. Brown, P.G., Hass, P.J.: Bhunt: automatic discovery of fuzzy algebraic constraints in relational data. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 668–679. VLDB Endowment (2003)

    Google Scholar 

  13. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of execution for SQL queries. In: ACM SIGMOD, pp. 803–814. ACM (2004)

    Google Scholar 

  14. Cheong, S.-K., Lim, C., Cho, B.-C.: Database processing performance and energy efficiency evaluation of DDR-SSD and HDD storage system based on the TPC-C. In: 2012 International Conference on Cloud Computing and Social Networking (ICCCSN), pp. 1–3. IEEE (2012)

    Google Scholar 

  15. Dannecker, L., Schulze, R., Böhm, M., Lehner, W., Hackenbroich, G.: Context-aware parameter estimation for forecast models in the energy domain. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 491–508. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22351-8_33

    Chapter  Google Scholar 

  16. Garcia-Molina, H., Ullman, J.D., Widom, J., Systems, D.: The Complete Book, 2nd edn. Prentice Hall Press (2008)

    Google Scholar 

  17. Harizopoulos, S., Shah, M., Meza, J., Ranganathan, P.: Energy efficiency: The new holy grail of data management systems research (2009)

    Google Scholar 

  18. Hassan, A., Vandierendonck, H., Nikolopoulos, D.S.: Energy-efficient in-memory data stores on hybrid memory hierarchies. In: Proceedings of the 11th International Workshop on Data Management on New Hardware, p. 1. ACM (2015)

    Google Scholar 

  19. Hurson, A., Azad, H.: Energy Efficiency in Data Centers and Clouds. Academic Press (2016)

    Google Scholar 

  20. Intel and Oracle. Oracle exadata on intel® xeon® processors: Extreme performance for enterprise computing. White paper (2011)

    Google Scholar 

  21. Khouri, S.: Cycle de vie sémantique de conception de systèmes de stockage et de manipulation de données. Ph.D. thesis, ISAE-ENSMA and ESI of Algeria, October 2013

    Google Scholar 

  22. Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.: Coradd: correlation aware database designer for materialized views and indexes. PVLDB 3(1), 1103–1113 (2010)

    Google Scholar 

  23. Korkmaz, M., Karyakin, A., Karsten, M., Salem, K.: Towards dynamic green-sizing for database servers. In: International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (ADMS), pp. 25–36 (2015)

    Google Scholar 

  24. Kunjir, M., Birwa, P.K., Haritsa, J.R.: Peak power plays in database engines. In: EDBT, pp. 444–455. ACM (2012)

    Google Scholar 

  25. Lang, W., Kandhan, R., Patel, J.M.: Rethinking query processing for energy efficiency: slowing down to win the race. IEEE Data Eng. Bull. 34(1), 12–23 (2011)

    Google Scholar 

  26. Lang, W., Patel, J.: Towards eco-friendly database management systems. arXiv preprint arXiv:0909.1767 (2009)

  27. Levene, M., Loizou, G.: Why is the snowflake schema a good data warehouse design? Inf. Syst. 28(3), 225–240 (2003)

    Article  Google Scholar 

  28. Mami, I., Bellahsene, Z.: A survey of view selection methods. SIGMOD Rec. 41(1), 20–29 (2012)

    Article  Google Scholar 

  29. McCullough, J.C., Agarwal, Y., et al.: Evaluating the effectiveness of model-based power characterization. In: USENIX Annual Technical Conference (2011)

    Google Scholar 

  30. Otoo, E., Rotem, D., Tsao, S.-C.: Energy smart management of scientific data. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 92–109. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02279-1_8

    Chapter  Google Scholar 

  31. Petit, J.-M., Toumani, F., Boulicaut, J.-F., Kouloumdjian, J.: Towards the reverse engineering of denormalized relational databases. In: ICDE, pp. 218–227 (1996)

    Google Scholar 

  32. Piatetsky-Shapiro, G.: The optimal selection of secondary indices is NP-complete. ACM SIGMOD Rec. 13(2), 72–75 (1983)

    Article  Google Scholar 

  33. Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers: a power consumption analysis of tpc-c results. PVLDB 1(2), 1229–1240 (2008)

    Google Scholar 

  34. Rasdorf, W.J., Ulberg, K.J., Baugh, J.W.: A structure-based model of semantic integrity constraints for relational data bases. Eng. Comput. 2(1), 31–39 (1987)

    Article  Google Scholar 

  35. Rodriguez-Martinez, M., Valdivia, H., et al.: Estimating power/energy consumption in database servers. Procedia Comput. Sci. 6, 112–117 (2011)

    Article  Google Scholar 

  36. Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-aware high performance computing with graphic processing units. In: Workshop on Power Aware Computing and System (2008)

    Google Scholar 

  37. Roukh, A., Bellatreche, L.: Eco-processing of OLAP complex queries. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 229–242. Springer, Cham (2015). doi:10.1007/978-3-319-22729-0_18

    Chapter  Google Scholar 

  38. Roukh, A., Bellatreche, L., Boukorca, A., Bouarar, S.: Eco-dmw: Eco-design methodology for data warehouses. In: DOLAP, pp. 1–10. ACM (2015)

    Google Scholar 

  39. Roukh, A., Bellatreche, L., Ordonez, C.: Enerquery: energy-aware query processing. To appear in ACM CIKM (2016)

    Google Scholar 

  40. Royer, K., Bellatreche, L., et al.: One semantic data warehouse fits both electrical vehicle data and their business processes. In: ITSC, pp. 635–640 (2014)

    Google Scholar 

  41. Schall, D., Hudlet, V., Härder, T.: Enhancing energy efficiency of database applications using SSDs. In: Proceedings of the Third C* Conference on Computer Science and Software Engineering, pp. 1–9. ACM (2010)

    Google Scholar 

  42. Siksnys, L., Thomsen, C., Pedersen, T.B.: MIRABEL DW: managing complex energy data in a smart grid. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 443–457. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32584-7_36

    Chapter  Google Scholar 

  43. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for parallel data warehouses. In: VLDB, pp. 273–284 (2000)

    Google Scholar 

  44. Tu, Y.-C., Wang, X., Zeng, B., Xu, Z.: A system for energy-efficient data management. ACM SIGMOD Rec. 43(1), 21–26 (2014)

    Article  Google Scholar 

  45. Vaisman, A., Zimányi, E., Systems, D.W.: Design and Implementation. Springer, Heidelberg (2014)

    Google Scholar 

  46. Woods, L., István, Z., Alonso, G.: Ibex: an intelligent storage engine with support for advanced SQL offloading. Proc. VLDB Endowment 7(11), 963–974 (2014)

    Article  Google Scholar 

  47. Xu, Z., Tu, Y.-C., Wang, X.: Exploring power-performance tradeoffs in database systems. In: ICDE, pp. 485–496 (2010)

    Google Scholar 

  48. Xu, Z., Tu, Y.-C., Wang, X.: Dynamic energy estimation of query plans in database systems. In: ICDCS, pp. 83–92. IEEE (2013)

    Google Scholar 

  49. Xu, Z., Wang, X., Tu, Y.-C.: Power-aware throughput control for database management systems. In: ICAC, pp. 315–324 (2013)

    Google Scholar 

  50. Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011). Elsevier

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladjel Bellatreche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bellatreche, L., Roukh, A., Bouarar, S. (2017). Step by Step Towards Energy-Aware Data Warehouse Design. In: Marcel, P., Zimányi, E. (eds) Business Intelligence. eBISS 2016. Lecture Notes in Business Information Processing, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-319-61164-8_5

Download citation

Publish with us

Policies and ethics