Abstract
Nowadays, the electrical energy efficiency is one of the most challenging issues in the area of ITs. DBMS have been pointed out as one of the major energy consumers. The reduction of their energy consumption becomes an urgent priority. Two aspects have to be considered in order to reduce this consumption: (i) the DBMS hosting the database applications and (ii) the Eco-design of these applications. Note that the first aspect got more attention than the second one. In this paper, we attempt to consider both aspects in the context of data warehouses (\(\mathcal {DW}\)). Firstly, we propose a generic framework integrating the energy in query optimizers of DBMS hosting already designed \(\mathcal {DW}\). An instantiation of this framework has been done on PostgreSQL DBMS. Secondly, and thanks to the variability that has been widely studied by the community of software, we propose to go back to the logical phase of the \(\mathcal {DW}\) life cycle and see how the energy may be integrated and then evaluate its impact on the physical phase. This variation is possible due to the relationships (hierarchies) that may exist among the properties of that \(\mathcal {DW}\). Finally, intensive experiments are conducted to evaluate the effectiveness and efficiency of our findings on PostgreSQL and Oracle DBMS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
IC specify conditions/propositions that must be maintained as true (Part.size > 0).
- 10.
- 11.
Java library for multi-objective evolutionary algorithms. www.moeaframework.org.
References
Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., et al.: The beckman report on database research. Commun. ACM 59(2), 92–99 (2016)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)
Anderlik, S., Neumayr, B., Schrefl, M.: Using domain ontologies as semantic dimensions in data warehouses. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 88–101. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4_7
Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines: Concepts and Implementation. Springer Publishing Company (2013)
Appuswamy, R., Olma, M., Ailamaki, A.: Scaling the memory power wall with dram-aware data management. In: Proceedings of the 11th International Workshop on Data Management on New Hardware, p. 3. ACM (2015)
Behzadnia, P., Yuan, W., Zeng, B., Tu, Y.-C., Wang, X.: Dynamic power-aware disk storage management in database servers. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 315–325. Springer, Cham (2016). doi:10.1007/978-3-319-44406-2_25
Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82(2), 47–111 (2011)
Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: ICDE, pp. 746–755 (2007)
Bouarar, S., Bellatreche, L., Jean, S., Baron, M.: Do rule-based approaches still make sense in logical data warehouse design? In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS 2014. LNCS, vol. 8716, pp. 83–96. Springer, Cham (2014). doi:10.1007/978-3-319-10933-6_7
Bouarar, S., Bellatreche, L., Roukh, A.: Eco-data warehouse design through logical variability. In: Steffen, B., Baier, C., Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 436–449. Springer, Cham (2017). doi:10.1007/978-3-319-51963-0_34
Boukorca, A., Bellatreche, L., Senouci, S.B., Faget, Z.: Coupling materialized view selection to multi query optimization: Hyper graph approach. IJDWM 11(2), 62–84 (2015)
Brown, P.G., Hass, P.J.: Bhunt: automatic discovery of fuzzy algebraic constraints in relational data. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 668–679. VLDB Endowment (2003)
Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of execution for SQL queries. In: ACM SIGMOD, pp. 803–814. ACM (2004)
Cheong, S.-K., Lim, C., Cho, B.-C.: Database processing performance and energy efficiency evaluation of DDR-SSD and HDD storage system based on the TPC-C. In: 2012 International Conference on Cloud Computing and Social Networking (ICCCSN), pp. 1–3. IEEE (2012)
Dannecker, L., Schulze, R., Böhm, M., Lehner, W., Hackenbroich, G.: Context-aware parameter estimation for forecast models in the energy domain. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 491–508. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22351-8_33
Garcia-Molina, H., Ullman, J.D., Widom, J., Systems, D.: The Complete Book, 2nd edn. Prentice Hall Press (2008)
Harizopoulos, S., Shah, M., Meza, J., Ranganathan, P.: Energy efficiency: The new holy grail of data management systems research (2009)
Hassan, A., Vandierendonck, H., Nikolopoulos, D.S.: Energy-efficient in-memory data stores on hybrid memory hierarchies. In: Proceedings of the 11th International Workshop on Data Management on New Hardware, p. 1. ACM (2015)
Hurson, A., Azad, H.: Energy Efficiency in Data Centers and Clouds. Academic Press (2016)
Intel and Oracle. Oracle exadata on intel® xeon® processors: Extreme performance for enterprise computing. White paper (2011)
Khouri, S.: Cycle de vie sémantique de conception de systèmes de stockage et de manipulation de données. Ph.D. thesis, ISAE-ENSMA and ESI of Algeria, October 2013
Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.: Coradd: correlation aware database designer for materialized views and indexes. PVLDB 3(1), 1103–1113 (2010)
Korkmaz, M., Karyakin, A., Karsten, M., Salem, K.: Towards dynamic green-sizing for database servers. In: International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (ADMS), pp. 25–36 (2015)
Kunjir, M., Birwa, P.K., Haritsa, J.R.: Peak power plays in database engines. In: EDBT, pp. 444–455. ACM (2012)
Lang, W., Kandhan, R., Patel, J.M.: Rethinking query processing for energy efficiency: slowing down to win the race. IEEE Data Eng. Bull. 34(1), 12–23 (2011)
Lang, W., Patel, J.: Towards eco-friendly database management systems. arXiv preprint arXiv:0909.1767 (2009)
Levene, M., Loizou, G.: Why is the snowflake schema a good data warehouse design? Inf. Syst. 28(3), 225–240 (2003)
Mami, I., Bellahsene, Z.: A survey of view selection methods. SIGMOD Rec. 41(1), 20–29 (2012)
McCullough, J.C., Agarwal, Y., et al.: Evaluating the effectiveness of model-based power characterization. In: USENIX Annual Technical Conference (2011)
Otoo, E., Rotem, D., Tsao, S.-C.: Energy smart management of scientific data. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 92–109. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02279-1_8
Petit, J.-M., Toumani, F., Boulicaut, J.-F., Kouloumdjian, J.: Towards the reverse engineering of denormalized relational databases. In: ICDE, pp. 218–227 (1996)
Piatetsky-Shapiro, G.: The optimal selection of secondary indices is NP-complete. ACM SIGMOD Rec. 13(2), 72–75 (1983)
Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers: a power consumption analysis of tpc-c results. PVLDB 1(2), 1229–1240 (2008)
Rasdorf, W.J., Ulberg, K.J., Baugh, J.W.: A structure-based model of semantic integrity constraints for relational data bases. Eng. Comput. 2(1), 31–39 (1987)
Rodriguez-Martinez, M., Valdivia, H., et al.: Estimating power/energy consumption in database servers. Procedia Comput. Sci. 6, 112–117 (2011)
Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-aware high performance computing with graphic processing units. In: Workshop on Power Aware Computing and System (2008)
Roukh, A., Bellatreche, L.: Eco-processing of OLAP complex queries. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 229–242. Springer, Cham (2015). doi:10.1007/978-3-319-22729-0_18
Roukh, A., Bellatreche, L., Boukorca, A., Bouarar, S.: Eco-dmw: Eco-design methodology for data warehouses. In: DOLAP, pp. 1–10. ACM (2015)
Roukh, A., Bellatreche, L., Ordonez, C.: Enerquery: energy-aware query processing. To appear in ACM CIKM (2016)
Royer, K., Bellatreche, L., et al.: One semantic data warehouse fits both electrical vehicle data and their business processes. In: ITSC, pp. 635–640 (2014)
Schall, D., Hudlet, V., Härder, T.: Enhancing energy efficiency of database applications using SSDs. In: Proceedings of the Third C* Conference on Computer Science and Software Engineering, pp. 1–9. ACM (2010)
Siksnys, L., Thomsen, C., Pedersen, T.B.: MIRABEL DW: managing complex energy data in a smart grid. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 443–457. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32584-7_36
Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for parallel data warehouses. In: VLDB, pp. 273–284 (2000)
Tu, Y.-C., Wang, X., Zeng, B., Xu, Z.: A system for energy-efficient data management. ACM SIGMOD Rec. 43(1), 21–26 (2014)
Vaisman, A., Zimányi, E., Systems, D.W.: Design and Implementation. Springer, Heidelberg (2014)
Woods, L., István, Z., Alonso, G.: Ibex: an intelligent storage engine with support for advanced SQL offloading. Proc. VLDB Endowment 7(11), 963–974 (2014)
Xu, Z., Tu, Y.-C., Wang, X.: Exploring power-performance tradeoffs in database systems. In: ICDE, pp. 485–496 (2010)
Xu, Z., Tu, Y.-C., Wang, X.: Dynamic energy estimation of query plans in database systems. In: ICDCS, pp. 83–92. IEEE (2013)
Xu, Z., Wang, X., Tu, Y.-C.: Power-aware throughput control for database management systems. In: ICAC, pp. 315–324 (2013)
Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011). Elsevier
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bellatreche, L., Roukh, A., Bouarar, S. (2017). Step by Step Towards Energy-Aware Data Warehouse Design. In: Marcel, P., Zimányi, E. (eds) Business Intelligence. eBISS 2016. Lecture Notes in Business Information Processing, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-319-61164-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-61164-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61163-1
Online ISBN: 978-3-319-61164-8
eBook Packages: Business and ManagementBusiness and Management (R0)