Abstract
The widespread use of mobile devices generates huge amount of location data. The generated data is useful for many applications, including location-based services such as outdoor sports forums, routine prediction, location-based activity recognition and location-based social networking. Sharing individuals’ trajectories and annotating them with activities, for example a tourist transportation mode during his trip, helps bringing more semantics to the GPS data. Indeed, this provides a better understanding of the user trajectories, and then more interesting location-based services. To address this issue, diverse range of novel techniques in the literature are explored to enrich this data with semantic information, notably, machine learning and statistical algorithms. In this work, we focused, at a first level, on exploring and classifying the literature works related to semantic trajectory computation. Secondly, we capitalized and discussed the benefits and limitations of each approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, GIS 2007, pp. 22:1–22:8. ACM, New York (2007)
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive Computing, pp. 1–17. Springer, Heidelberg (2004)
Cao, X., Cong, G., Jensen, C.S.: Mining significant semantic locations from GPS data. Proc. VLDB Endow. 3(1–2), 1009–1020 (2010)
Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., Klasnja, P.P., Koscher, K., LaMarca, A., Landay, J.A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., Wyatt, D.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008)
Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence, IAAI 2005, vol. 3. pp. 1541–1546. AAAI Press (2005)
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6(2), 13:1–13:27 (2010)
Schüssler, N., Axhausen, K.: Processing GPS raw data without additional information. Eidgenössische Technische Hochschule, Institut für Verkehrsplanung und Transportsysteme (2008)
Spaccapietra, S., Parent, C., Damiani, M., Demacedo, J., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)
Wu, F., Li, Z., Lee, W., Wang, H., Huang, Z.: Semantic annotation of mobility data using social media. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1253–1263. International World Wide Web Conferences Steering Committee (2015)
Xie, K., Deng, K., Zhou, X.: From trajectories to activities: a spatio-temporal join approach. In: Proceedings of the 2009 International Workshop on Location Based Social Networks, LBSN 2009, pp. 25–32. ACM, New York (2009)
Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Collaborative location and activity recommendations with GPS history data. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 1029–1038. ACM, New York (2010)
Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.Y.: Understanding transportation modes based on GPS data for web applications. ACM Trans. Web (TWEB) 4(1), 1 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Sakouhi, T., Akaichi, J., Ahmed, U. (2018). Computing Semantic Trajectories: Methods and Used Techniques. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-59480-4_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59479-8
Online ISBN: 978-3-319-59480-4
eBook Packages: EngineeringEngineering (R0)