Abstract
In the current technological revolution, the proliferation of sensors in smart devices and environments convert users into a real-life data source that ranges from the monitoring of vital signs to the recognition of their lifestyle, behavior and health. In this work, we describe current trends and issues on innovative healthcare systems, which are integrating wearable devices and smart environments into numerous health applications. The report includes a revision of the literature with academic, technical and legal concerns on the development of health solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abelson, P.H.: A third technological revolution. Science 279(5359), 2019–2109 (1998)
Bower, J.L., Christensen, C.M.: Disruptive technologies: catching the wave, pp. 506–520 (1995). Harvard Business Review Video
Schwamm, L.H.: Telehealth: seven strategies to successfully implement disruptive technology and transform health care. Health Aff. 33(2), 200–206 (2014)
Franz, N.K., Cox, R.A.: Time for disruptive innovation. J. Extension 50(2), 2COM1 (2012)
Christensen, C.M., Horn, M.B., Johnson, C.W.: Disrupting Class: How Disruptive Innovation will Change the Way the World Learns, vol. 98. McGraw-Hill, New York (2008)
Christensen, C.: The Innovatorś Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press, Boston (2013)
Assink, M.: Inhibitors of disruptive innovation capability: a conceptual model. Eur. J. Innov. Manag. 9(2), 215–233 (2006)
Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)
Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)
Malvey, D., Slovensky, D.J.: mHealth: Transforming Healthcare. Springer, New York (2014)
Free, C., Phillips, G., Watson, L., Galli, L., Felix, L., Edwards, P., Haines, A.: The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. PLoS Med. 10(1), e1001363 (2013)
Wantland, D.J., Portillo, C.J., Holzemer, W.L., Slaughter, R., McGhee, E.M.: The effectiveness of Web-based vs. non-Web-based interventions: a meta-analysis of behavioral change outcomes. J. Med. Internet Res. 6(4), e40 (2004)
Lymberis, A., Dittmar, A.: Advanced wearable health systems and applications-research and development efforts in the European Union. IEEE Eng. Med. Biol. Mag. 26(3), 29–33 (2007)
Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Appl. Rev. 40(1), 1–12 (2010)
Patel, M.S., Asch, D.A., Volpp, K.G.: Wearable devices as facilitators, not drivers, of health behavior change. JAMA 313(5), 459–460 (2015)
Szydlo, T., Konieczny, M.: Mobile and wearable devices in an open and universal system for remote patient monitoring. Microprocess. Microsyst. 46, 44–54 (2016)
Albaghli, R., Anderson, K.M.: A vision for heart rate health through wearables. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive, Ubiquitous Computing: Adjunct, pp. 1101–1105. ACM, September 2016
MedTech Europe: The European Medical Technology Industry in Figures. MedTech Europe, Brussels (2013)
Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E.: Edge-centric computing: vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)
Chen, L.W., Ho, Y.F., Kuo, W.T., Tsai, M.F.: Intelligent file transfer for smart handheld devices based on mobile cloud computing. Int. J. Commun. Syst. 30(1) (2015)
Xu, H., Collinge, W.O., Schaefer, L.A., Landis, A.E., Bilec, M.M., Jones, A.K.: Towards a commodity solution for the Internet of Things. Comput. Electr. Eng. 52, 138–156 (2016)
Kopetz, H.: Internet of Things. In: Real-time systems, pp. 307–323. Springer, New York (2011)
Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart objects as building blocks for the Internet of Things. IEEE Internet Comput. 14(1), 44–51 (2010)
Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15(3), 1192–1209 (2013)
Chang, C.-Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A.A., Rizzo, A.A.: Towards pervasive physical rehabilitation using Microsoft Kinect. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 159–162. IEEE, May 2012
Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8(4), 10–17 (2001)
Varshney, U.: Pervasive healthcare and wireless health monitoring. Mob. Netw. Appl. 12(2–3), 113–127 (2007)
Custodio, V., Herrera, F.J., Lpez, G., Moreno, J.I.: A review on architectures and communications technologies for wearable health-monitoring systems. Sensors 12(10), 13907–13946 (2012)
Haefner, K.: Evolution of Information Processing Systems: An Interdisciplinary Approach for a New Understanding of Nature and Society. Springer Publishing Company Incorporated, Heidelberg (2011)
Emmanouilidis, C., Koutsiamanis, R.A., Tasidou, A.: Mobile guides: taxonomy of architectures, context awareness, technologies and applications. J. Netw. Comput. Appl. 36(1), 103–125 (2013)
Makris, P., Skoutas, D.N., Skianis, C.: A survey on context-aware mobile and wireless networking: on networking and computing environments integration. IEEE Commun. Surv. Tutorials 15(1), 362–386 (2013)
Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the Internet of Things: a survey. IEEE Commun. Surv. Tutorials 16(1), 414–454 (2014)
Dicianno, B.E., Parmanto, B., Fairman, A.D., Crytzer, T.M., Daihua, X.Y., Pramana, G., Coughenour, D., Petrazzi, A.A.: Perspectives on the evolution of mobile (mHealth) technologies and application to rehabilitation. Phys. Ther. 95(3), 397–405 (2015)
Silva, B.M., Rodrigues, J.J., de la Torre Díez, I., López-Coronado, M., Saleem, K.: Mobile-health: a review of current state in 2015. J. Biomed. Inform. 56, 265–272 (2015)
Beratarrechea, A., Lee, A.G., Willner, J.M., Jahangir, E., Ciapponi, A., Rubinstein, A.: The impact of mobile health interventions on chronic disease outcomes in developing countries: a systematic review. Telemed. e-Health 20(1), 75–82 (2014)
Martínez-Pérez, B., De La Torre-Díez, I., López-Coronado, M.: Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J. Med. Internet Res. 15(6), e120 (2013)
Castelnuovo, G., Manzoni, G.M., Pietrabissa, G., Corti, S., Giusti, E.M., Molinari, E., Simpson, S.: Obesity and outpatient rehabilitation using mobile technologies: the potential mHealth approach. Front. Psychol. 5, 559 (2014)
Friess, P.: Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems. River Publishers, Denmark (2013)
Zelkha, E., Epstein, B., Birrell, S., Dodsworth, C.: From devices to ambient intelligence. In: Digital Living Room Conference, vol. 6, June 1998
Marie, P., Desprats, T., Chabridon, S., Sibilla, M.: Extending ambient intelligence to the Internet of Things: new challenges for QoC management. In: Hervás, R., Lee, S., Nugent, C., Bravo, J. (eds.) UCAmI 2014. LNCS, vol. 8867, pp. 224–231. Springer, Cham (2014). doi:10.1007/978-3-319-13102-3_37
United Nations, Department of Economic and Social Affairs, Population Division: World Population Ageing (2013). ST/ESA/SER.A/348
Branger, J., Pang, Z.: From automated home to sustainable, healthy and manufacturing home: a new story enabled by the Internet-of-Things and Industry 4.0. J. Manag. Anal. 2(4), 314–332 (2014)
Yin, J., Tian, G., Feng, Z., Li, J.: Human activity recognition based on multiple order temporal information. Comput. Electr. Eng. 40(5), 1538–1551 (2014)
Alam, M.M., Hamida, E.B.: Surveying wearable human assistive technology for life and safety critical applications: standards, challenges and opportunities. Sensors 14(5), 9153–9209 (2014)
Van Hoof, J., Wouters, E.J.M., Marston, H.R., Vanrumste, B., Overdiep, R.A.: Ambient assisted living and care in The Netherlands: the voice of the user. In: Pervasive and Ubiquitous Technology Innovations for Ambient Intelligence, Environments, vol. 205 (2012)
Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A survey of context data distribution for mobile ubiquitous systems. ACM Comput. Surv. (CSUR) 44(4), 24 (2012)
Pei, Z., Deng, Z., Yang, B., Cheng, X.: Application-oriented wireless sensor network communication protocols, hardware platforms: a survey. In: IEEE International Conference on Industrial Technology, ICIT, pp. 1–6. IEEE (2008)
Villalonga, C., Razzaq, M.A., Khan, W.A., Pomares, H., Rojas, I., Lee, S., Banos, O.: Ontology-based high-level context inference for human behavior identification. Sensors 16(10), 1617 (2016)
Nugent, C.D., Finlay, D.D., Davies, R.J., Wang, H.Y., Zheng, H., Hallberg, J., Synnes, K., Mulvenna, M.D.: homeML – an open standard for the exchange of data within smart environments. In: Okadome, T., Yamazaki, T., Makhtari, M. (eds.) ICOST 2007. LNCS, vol. 4541, pp. 121–129. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73035-4_13
Weichhart, G., Molina, A., Chen, D., Whitman, L.E., Vernadat, F.: Challenges and current developments for sensing, smart and sustainable enterprise systems. Comput. Ind. 79, 34–46 (2015)
Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T.: Tactics-based remote execution for mobile computing. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, pp. 273–286. ACM, May 2003
Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects, vol. 1. Springer Science & Business Media, New York (2012)
Liu, G.: Distributing network services and resources in a mobile communications network. U.S. Patent No. 5,825,759. Washington, DC: U.S. Patent and Trademark Office (1998)
Chesbrough, H.: Open Business Models: How to Thrive in the New Innovation Landscape. Harvard Business Press, Cambridge (2013)
Henning, M.: A new approach to object-oriented middleware. IEEE Internet Comput. 8(1), 66–75 (2004)
Salehi, A.: Design and implementation of an efficient data stream processing system, Doctoral dissertation, cole Polytechnique Fdrale de Lausanne (2010)
Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 180–191. VLDB Endowment, August 2004
Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)
Neuhaus, H., Compton, M.: The semantic sensor network ontology. In: AGILE Workshop on Challenges in Geospatial Data Harmonisation, Hannover, Germany, pp. 1–33 (2009)
Ashman, J.J.: Multiple chronic conditions among US adults who visited physician offces: data from the National Ambulatory Medical Care Survey, 2009. Preventing Chronic Dis. 10 (2013)
Harbers, M.M., Achterberg, P.W.: Information, Indicators and Data on the Prevalence of Chronic Diseases in the European Union. RIVM, Bilthoven (2012)
Veazie, P.J.: An individual-based framework for the study of medical error. Int. J. Qual. Health Care 18(4), 314–319 (2006)
Lisby, M., Nielsen, L.P., Mainz, J.: Errors in the medication process: frequency, type, and potential clinical consequences. Int. J. Qual. Health Care 17(1), 15–22 (2005)
Lewis, P.J., Dornan, T., Taylor, D., Tully, M.P., Wass, V., Ashcroft, D.M.: Prevalence, incidence and nature of prescribing errors in hospital inpatients. Drug Saf. 32(5), 379–389 (2009)
Lotfi, A., Langensiepen, C., Mahmoud, S.M., Akhlaghinia, M.J.: Smart homes for the elderly dementia sufferers: identification and prediction of abnormal behaviour. J. Ambient Intell. Humanized Comput. 3(3), 205–218 (2012)
Kamei, T.: Information and communication technology for home care in the future. Jpn. J. Nurs. Sci. 10(2), 154–161 (2013)
Kahn, J.M.: Virtual visits - confronting the challenges of telemedicine. N. Engl. J. Med. 372(18), 1684–1685 (2015)
Weinstein, R.S., Lopez, A.M., Joseph, B.A., Erps, K.A., Holcomb, M., Barker, G.P., Krupinski, E.A.: Telemedicine, telehealth, and mobile health applications that work: opportunities and barriers. Am. J. Med. 127(3), 183–187 (2014)
Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., Marrocco, G.: RFID technology for IoT-based personal healthcare in smart spaces. IEEE Internet of Things J. 1(2), 144–152 (2014)
Vasquez, A., Huerta, M., Clotet, R., González, R., Rivas, D., Bautista, V.: Using NFC technology for monitoring patients and identification health services. In: Braidot, A., Hadad, A. (eds.) CLAIB 2014. IFMBE Proceedings, vol. 49, pp. 805–808. Springer, Cham (2015)
Bates, D.W., Saria, S., Ohno-Machado, L., Shah, A., Escobar, G.: Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33(7), 1123–1131 (2014)
Kuo, M.H., Sahama, T., Kushniruk, A.W., Borycki, E.M., Grunwell, D.K.: Health big data analytics: current perspectives, challenges and potential solutions. Int. J. Big Data Intell. 1(1–2), 114–126 (2014)
Chen, M., Ma, Y., Song, J., Lai, C.F., Hu, B.: Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 21(5), 825–845 (2016)
Obermeyer, Z., Emanuel, E.J.: Predicting the future - Big Data, machine learning, and clinical medicine. N. Engl. J. Med. 375(13), 1216–1219 (2016)
Bonis, P.: Clinical decision support technology: saving lives. Clin. Serv. J. (2016)
Ku, W.Y., Chou, T.Y., Chung, L.K.: The cloud-based sensor data warehouse. In: Proceedings of ISGC 2011 & OGF 31, vol. 75 (2011)
Yu, H., Wang, D.: Research and implementation of massive health care data management and analysis based on Hadoop. In: 2012 Fourth International Conference on Computational and Information Sciences (ICCIS), pp. 514–517. IEEE, August 2012
Archenaa, J., Anita, E.A.M.: Interactive Big Data management in healthcare using Spark. In: Vijayakumar, V., Neelanarayanan, V. (eds.) ISBCC 2016. SIST, vol. 49, pp. 265–272. Springer, Cham (2016). doi:10.1007/978-3-319-30348-2_21
Jin, Z., Chen, Y.: Telemedicine in the Cloud Era: prospects and challenges. IEEE Pervasive Comput. 14(1), 54–61 (2015)
Yadav, S., Chappar, V., Datir, S., Jagtap, P.: An overview of a pervasive and personalized smart health-care system using IoT. Int. Educ. Res. J. 2(11) (2016)
Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2(1), 1 (2014)
Lokkerbol, J., Adema, D., Cuijpers, P., Reynolds, C.F., Schulz, R., Weehuizen, R., Smit, F.: Improving the cost-effectiveness of a healthcare system for depressive disorders by implementing telemedicine: a health economic modeling study. Am. J. Geriatr. Psychiatry 22(3), 253–262 (2014)
Fernández-Alemán, J.L., Senor, I.C., Lozoya, P.O., Toval, A.: Security and privacy in electronic health records: a systematic literature review. J. Biomed. Inform. 46(3), 541–562 (2013)
Steinhubl, S.R., Muse, E.D., Topol, E.J.: The emerging field of mobile health. Sci. Transl. Med. 7(283), 283rv3 (2015)
Garrety, K., McLoughlin, I., Zelle, G.: Disruptive innovation in health care: business models, moral orders and electronic records. Soc. Policy Soc. 13(04), 579–592 (2014)
Kaldoudi, E., Drosatos, G., Portokallidis, N., Third, A.: An ontology based scheme for formal care plan meta-description. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IP, vol. 57, pp. 785–790. Springer, Cham (2016). doi:10.1007/978-3-319-32703-7_153
Rong, C., Nguyen, S.T., Jaatun, M.G.: Beyond lightning: a survey on security challenges in cloud computing. Comput. Electr. Eng. 39(1), 47–54 (2013)
Shrestha, N.M., Alsadoon, A., Prasad, P.W.C., Hourany, L., Elchouemi, A.: Enhanced e-health framework for security and privacy in healthcare system. In: 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC), pp. 75–79. IEEE, April 2016
Murdoch, T.B., Detsky, A.S.: The inevitable application of Big Data to health care. JAMA 309(13), 1351–1352 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Peláez, M.D., López-Medina, M., Espinilla, M., Medina-Quero, J. (2017). Key Factors for Innovative Developments on Health Sensor-Based System. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_59
Download citation
DOI: https://doi.org/10.1007/978-3-319-56154-7_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56153-0
Online ISBN: 978-3-319-56154-7
eBook Packages: Computer ScienceComputer Science (R0)