[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recent Advances in Graph Partitioning

  • Chapter
  • First Online:
Algorithm Engineering

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9220))

Abstract

We survey recent trends in practical algorithms for balanced graph partitioning, point to applications and discuss future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Sometimes more complex models are used to model lanes, turn costs etc.

  2. 2.

    http://staffweb.cms.gre.ac.uk/~wc06/partition/.

References

  1. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: 20th International Parallel and Distributed Processing Symposium (IPDPS). IEEE (2006)

    Google Scholar 

  2. Akhremtsev, Y., Sanders, P., Schulz, C.: (Semi-)external algorithms for graph partitioning and clustering. In: 15th Workshop on Algorithm Engineering and Experimentation (ALENEX), pp. 33–43 (2015)

    Google Scholar 

  3. Andersen, R., Lang, K.J.: An algorithm for improving graph partitions. In: 19th ACM-SIAM Symposium on Discrete Algorithms, pp. 651–660 (2008)

    Google Scholar 

  4. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6), 929–939 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armbruster, M.: Branch-and-cut for a semidefinite relaxation of large-scale minimum bisection problems. Ph.D. thesis, U. Chemnitz (2007)

    Google Scholar 

  6. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 112–124. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68891-4_8

    Chapter  Google Scholar 

  7. Arora, S., Hazan, E., Kale, S.: O(\(\sqrt{\log n}\)) approximation to sparsest cut in Õ(n\(^{\text{2 }}\)) time. SIAM J. Comput. 39(5), 1748–1771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: 36th ACM Symposium on the Theory of Computing (STOC), pp. 222–231 (2004)

    Google Scholar 

  9. Aubanel, E.: Resource-aware load balancing of parallel applications. In: Udoh, E., Wang, F.Z. (eds.) Handbook of Research on Grid Technologies and Utility Computing: Concepts for Managing Large-Scale Applications, pp. 12–21. Information Science Reference - Imprint of: IGI Publishing, May 2009

    Google Scholar 

  10. Auer, B.F., Bisseling, R.H.: Graph coarsening and clustering on the GPU. In: Bader et al. [13], pp. 19–36

    Google Scholar 

  11. Aykanat, C., Cambazoglu, B.B., Findik, F., Kurc, T.: Adaptive decomposition and remapping algorithms for object-space-parallel direct volume rendering of unstructured grids. J. Parallel Distrib. Comput. 67(1), 77–99 (2007). http://dx.doi.org/10.1016/j.jpdc.2006.05.005

    Article  MATH  Google Scholar 

  12. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and graph partitioning. In: Encyclopedia of Social Network Analysis and Mining (to appear)

    Google Scholar 

  13. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning and Graph Clustering – 10th DIMACS Impl. Challenge, Contemporary Mathematics, vol. 588. AMS, Boston (2013)

    Google Scholar 

  14. Bader, M.: Space-Filling Curves. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  15. Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. In: 6th SIAM Conference on Parallel Processing for Scientific Computing, pp. 711–718 (1993)

    Google Scholar 

  16. Benlic, U., Hao, J.K.: An effective multilevel memetic algorithm for balanced graph partitioning. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 121–128 (2010)

    Google Scholar 

  17. Benlic, U., Hao, J.K.: A multilevel memetic approach for improving graph \(k\)-partitions. IEEE Trans. Evol. Comput. 15(5), 624–642 (2011)

    Article  Google Scholar 

  18. Benlic, U., Hao, J.K.: An effective multilevel tabu search approach for balanced graph partitioning. Comput. Oper. Res. 38(7), 1066–1075 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized complexity of computing balanced partitions in graphs. CoRR abs/1312.7014 (2013). http://arxiv.org/abs/1312.7014

  20. Bhatele, A., Kale, L.: Heuristic-based techniques for mapping irregular communication graphs to mesh topologies. In: 13th Conference on High Performance Computing and Communications (HPCC), pp. 765–771 (2011)

    Google Scholar 

  21. Bhatele, A., Jain, N., Gropp, W.D., Kale, L.V.: Avoiding hot-spots on two-level Direct networks. In: ACM/IEEE Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 76:1–76:11. ACM (2011)

    Google Scholar 

  22. Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  23. Bichot, C.E.: A new method, the fusion fission, for the relaxed \(k\)-way graph partitioning problem, and comparisons with some multilevel algorithms. J. Math. Model. Algorithms 6(3), 319–344 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Birn, M., Osipov, V., Sanders, P., Schulz, C., Sitchinava, N.: Efficient parallel and external matching. In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 659–670. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40047-6_66

    Chapter  Google Scholar 

  25. Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on large scale-free graphs using 2D graph partitioning. In: ACM/IEEE Conference for High Performance Computing, Networking, Storage and Analysis (SC) (2013)

    Google Scholar 

  26. Boppana, R.B.: Eigenvalues and graph bisection: an average-case analysis. In: 28th Symposium on Foundations of Computer Science (FOCS), pp. 280–285 (1987)

    Google Scholar 

  27. Brandfass, B., Alrutz, T., Gerhold, T.: Rank reordering for MPI communication optimization. Comput. Fluids 80, 372–380 (2013). http://www.sciencedirect.com/science/article/pii/S004579301200028X

    Article  Google Scholar 

  28. Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equicut problem. Math. Program. 78(2), 243–263 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bui, T., Chaudhuri, S., Leighton, F., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7, 171–191 (1987)

    Article  MathSciNet  Google Scholar 

  30. Buluç, A., Gilbert, J.R.: The combinatorial BLAS: design, implementation, and applications. Int. J. High Perform. Comput. Appl. 25(4), 496–509 (2011)

    Article  Google Scholar 

  31. Buluç, A., Madduri, K.: Graph partitioning for scalable distributed graph computations. In: Bader et al. [13], pp. 83–102

    Google Scholar 

  32. Camilus, K.S., Govindan, V.K.: A review on graph based segmentation. IJIGSP 4, 1–13 (2012)

    Article  Google Scholar 

  33. Catalyurek, U., Aykanat, C.: A hypergraph-partitioning approach for coarse-grain decomposition. In: ACM/IEEE Conference on Supercomputing (SC). ACM (2001)

    Google Scholar 

  34. Catalyurek, U., Boman, E., et al.: Hypergraph-based dynamic load balancing for adaptive scientific computations. In: 21st International Parallel and Distributed Processing Symposium (IPDPS). IEEE (2007)

    Google Scholar 

  35. Çatalyürek, Ü., Aykanat, C.: PaToH: partitioning tool for hypergraphs. In: Padua, D. (ed.) Encyclopedia of Parallel Computing. Springer, Heidelberg (2011)

    Google Scholar 

  36. Chan, S.Y., Ling, T.C., Aubanel, E.: The impact of heterogeneous multi-core clusters on graph partitioning: an empirical study. Cluster Comput. 15(3), 281–302 (2012)

    Article  Google Scholar 

  37. Chardaire, P., Barake, M., McKeown, G.P.: A PROBE-based heuristic for graph partitioning. IEEE Trans. Comput. 56(12), 1707–1720 (2007)

    Article  MathSciNet  Google Scholar 

  38. Chen, J., Safro, I.: Algebraic distance on graphs. SIAM J. Sci. Comput. 33(6), 3468–3490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chevalier, C., Pellegrini, F.: Improvement of the efficiency of genetic algorithms for scalable parallel graph partitioning in a multi-level framework. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 243–252. Springer, Heidelberg (2006). doi:10.1007/11823285_25

    Chapter  Google Scholar 

  40. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Parallel Comput. 34(6), 318–331 (2008)

    Article  MathSciNet  Google Scholar 

  41. Chevalier, C., Safro, I.: Comparison of coarsening schemes for multi-level graph partitioning. In: Proceedings Learning and Intelligent Optimization (2009)

    Google Scholar 

  42. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.: On compressing social networks. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 219–228 (2009)

    Google Scholar 

  43. Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In: 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 672–680 (2011)

    Google Scholar 

  44. Comellas, F., Sapena, E.: A multiagent algorithm for graph partitioning. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 279–285. Springer, Heidelberg (2006). doi:10.1007/11732242_25

    Chapter  Google Scholar 

  45. Cong, J., Shinnerl, J.: Multilevel Optimization in VLSICAD. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  46. Davis, T.: The University of Florida Sparse Matrix Collection (2008). http://www.cise.ufl.edu/research/sparse/matrices/

  47. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: 6th Symposium on Operating System Design and Implementation (OSDI), pp. 137–150. USENIX (2004)

    Google Scholar 

  48. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_32

    Chapter  Google Scholar 

  49. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Exact combinatorial branch-and-bound for graph bisection. In: 12th Workshop on Algorithm Engineering and Experimentation (ALENEX), pp. 30–44 (2012)

    Google Scholar 

  50. Delling, D., Goldberg, A.V., et al.: Graph partitioning with natural cuts. In: 25th International Parallel and Distributed Processing Symposium (IPDPS), pp. 1135–1146 (2011)

    Google Scholar 

  51. Delling, D., Werneck, R.F.: Better bounds for graph bisection. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 407–418. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33090-2_36

    Chapter  Google Scholar 

  52. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_5

    Chapter  Google Scholar 

  53. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Parallel hypergraph partitioning for scientific computing. In: Proceedings of the IEEE International Parallel and Distributed Processing Symposium, p. 124. IPDPS 2006 (2006). http://dl.acm.org/citation.cfm?id=1898953.1899056

  54. Guo, D., Ke Liao, H.J.: Power system reconfiguration based on multi-level graph partitioning. In: 7th International Conference, GIScience 2012 (2012)

    Google Scholar 

  55. Diekmann, R., Monien, B., Preis, R.: Using helpful sets to improve graph bisections. In: Interconnection Networks and Mapping and Scheduling Parallel Computations, vol. 21, pp. 57–73 (1995)

    Google Scholar 

  56. Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM. Parallel Comput. 26, 1555–1581 (2000)

    Article  MATH  Google Scholar 

  57. Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM. Parallel Comput. 26(12), 1555–1581 (2000)

    Article  MATH  Google Scholar 

  58. Donath, W.E., Hoffman, A.J.: Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. IBM Tech. Discl. Bull. 15(3), 938–944 (1972)

    Google Scholar 

  59. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17(5), 420–425 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  60. Donde, V., Lopez, V., Lesieutre, B., Pinar, A., Yang, C., Meza, J.: Identification of severe multiple contingencies in electric power networks. In: 37th N. A. Power Symposium, pp. 59–66. IEEE (2005)

    Google Scholar 

  61. Drake, D., Hougardy, S.: A simple approximation algorithm for the weighted matching problem. Inf. Process. Lett. 85, 211–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Drake Vinkemeier, D.E., Hougardy, S.: A linear-time approximation algorithm for weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Duan, R., Pettie, S., Su, H.H.: Scaling Algorithms for Approximate and Exact Maximum Weight Matching. CoRR abs/1112.0790 (2011)

    Google Scholar 

  64. Dutt, S.: New faster Kernighan-Lin-type graph-partitioning algorithms. In: 4th IEEE/ACM Conference on Computer-Aided Design, pp. 370–377 (1993)

    Google Scholar 

  65. Even, G., Naor, J.S., Rao, S., Schieber, B.: Fast approximate graph partitioning algorithms. SIAM J. Comput. 28(6), 2187–2214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. Fagginger Auer, B.O., Bisseling, R.H.: Abusing a hypergraph partitioner for unweighted graph partitioning. In: Bader et al. [13], pp. 19–35

    Google Scholar 

  67. Farhat, C., Lesoinne, M.: Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics. J. Numer. Methods Eng. 36(5), 745–764 (1993). http://dx.doi.org/10.1002/nme.1620360503

    Article  MATH  Google Scholar 

  68. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Feldmann, A.E., Widmayer, P.: An \(\cal{O}(n^4)\) time algorithm to compute the bisection width of solid grid graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 143–154. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_13

    Chapter  Google Scholar 

  70. Felner, A.: Finding optimal solutions to the graph partitioning problem with heuristic search. Ann. Math. Artif. Intell. 45, 293–322 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ferreira, C.E., Martin, A., De Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated graph partitioning problem: a computational study. Math. Program. 81(2), 229–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  72. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Conference on Design Automation, pp. 175–181 (1982)

    Google Scholar 

  73. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25(4), 619–633 (1975)

    MathSciNet  MATH  Google Scholar 

  74. Fietz, J., Krause, M.J., Schulz, C., Sanders, P., Heuveline, V.: Optimized hybrid parallel lattice Boltzmann fluid flow simulations on complex geometries. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 818–829. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32820-6_81

    Chapter  Google Scholar 

  75. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3), 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  76. Fortunato, S.: Community Detection in Graphs. CoRR abs/0906.0612 (2009)

    Google Scholar 

  77. Fourestier, S., Pellegrini, F.: Adaptation au repartitionnement de graphes d’une méthode d’optimisation globale par diffusion. In: RenPar’20 (2011)

    Google Scholar 

  78. Galinier, P., Boujbel, Z., Fernandes, M.C.: An efficient memetic algorithm for the graph partitioning problem. Ann. Oper. Res. 191(1), 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  79. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: 6th ACM Symposium on Theory of Computing, pp. 47–63. STOC, ACM (1974)

    Google Scholar 

  80. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  81. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Upper Saddle River (1981)

    MATH  Google Scholar 

  82. Ghazinour, K., Shaw, R.E., Aubanel, E.E., Garey, L.E.: A linear solver for benchmarking partitioners. In: 22nd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–8 (2008)

    Google Scholar 

  83. Gilbert, J.R., Miller, G.L., Teng, S.H.: Geometric mesh partitioning: implementation and experiments. SIAM J. Sci. Comput. 19(6), 2091–2110 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  84. Glantz, R., Meyerhenke, H., Noe, A.: Algorithms for mapping parallel processes onto grid and torus architectures. In: Proceedings of the 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (2015, to appear). Preliminary version: http://arxiv.org/abs/1411.0921

  85. Glantz, R., Meyerhenke, H., Schulz, C.: Tree-based coarsening and partitioning of complex networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 364–375. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07959-2_31

    Google Scholar 

  86. Glover, F.: Tabu search – part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  87. Glover, F.: Tabu search – part II. ORSA J. Comput. 2(1), 4–32 (1990)

    Article  MATH  Google Scholar 

  88. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the \(k\)-cut problem for fixed \(k\). Math. Oper. Res. 19(1), 24–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  89. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 469–475 (2006)

    Article  Google Scholar 

  90. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed graph computations. In: Parallel Object-Oriented Scientific Computing (POOSC) (2005)

    Google Scholar 

  91. Gutfraind, A., Meyers, L.A., Safro, I.: Multiscale Network Generation. CoRR abs/1207.4266 (2012)

    Google Scholar 

  92. Hager, W.W., Hungerford, J.T., Safro, I.: A multilevel bilinear programming algorithm for the vertex separator problem. CoRR abs/1410.4885 (2014). arXiv:1410.4885

  93. Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic programming. SIAM J. Discrete Math. 12(4), 500–523 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  94. Hager, W.W., Phan, D.T., Zhang, H.: An exact algorithm for graph partitioning. Math. Program. 137(1–2), 531–556 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  95. Hendrickson, B.: Chaco: Software for Partitioning Graphs. http://www.cs.sandia.gov/bahendr/chaco.html

  96. Hendrickson, B.: Graph partitioning and parallel solvers: has the emperor no clothes? In: Ferreira, A., Rolim, J., Simon, H., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998). doi:10.1007/BFb0018541

    Chapter  Google Scholar 

  97. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: ACM/IEEE Conference on Supercomputing 1995 (1995)

    Google Scholar 

  98. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput. 16(2), 452–469 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  99. Hendrickson, B., Leland, R., Driessche, R.V.: Enhancing data locality by using terminal propagation. In: 29th Hawaii International Conference on System Sciences (HICSS 2009), vol. 1, p. 565. Software Technology and Architecture (1996)

    Google Scholar 

  100. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel Comput. 26(12), 1519–1534 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  101. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel architectures. In: ACM International Conference on Supercomputing (ICS 2011), pp. 75–85. ACM (2011)

    Google Scholar 

  102. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph partitioner. In: 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–12 (2010)

    Google Scholar 

  103. Hromkovič, J., Monien, B.: The bisection problem for graphs of degree 4 (configuring transputer systems). In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 211–220. Springer, Heidelberg (1991). doi:10.1007/3-540-54345-7_64

    Chapter  Google Scholar 

  104. Huang, S., Aubanel, E., Bhavsar, V.C.: PaGrid: a mesh partitioner for computational grids. J. Grid Comput. 4(1), 71–88 (2006)

    Article  Google Scholar 

  105. Hungershöfer, J., Wierum, J.-M.: On the quality of partitions based on space-filling curves. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 36–45. Springer, Heidelberg (2002). doi:10.1007/3-540-47789-6_4

    Chapter  Google Scholar 

  106. Hyafil, L., Rivest, R.: Graph partitioning and constructing optimal decision trees are polynomial complete problems. Technical report 33, IRIA - Laboratoire de Recherche en Informatique et Automatique (1973)

    Google Scholar 

  107. Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters: algorithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst. PP(99), 1–1 (2013)

    Google Scholar 

  108. Jerrum, M., Sorkin, G.B.: The metropolis algorithm for graph bisection. Discret. Appl. Math. 82(1–3), 155–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  109. Junker, B., Schreiber, F.: Analysis of Biological Networks. Wiley, Hoboken (2008)

    Book  Google Scholar 

  110. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design - From Graph Partitioning to Timing Closure. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  111. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite programming. INFORMS J. Comput. 12(3), 177–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  112. Karypis, G., Kumar, V.: Parallel multilevel \(k\)-way partitioning scheme for irregular graphs. In: ACM/IEEE Supercomputing 1996 (1996)

    Google Scholar 

  113. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  114. Karypis, G., Kumar, V.: Multilevel \(k\)-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  115. Karypis, G., Kumar, V.: Multilevel \(k\)-way hypergraph partitioning. In: 36th ACM/IEEE Design Automation Conference, pp. 343–348. ACM (1999)

    Google Scholar 

  116. Karypis, G., Kumar, V.: Parallel multilevel series \(k\)-way partitioning scheme for irregular graphs. SIAM Rev. 41(2), 278–300 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  117. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(1), 291–307 (1970)

    Article  MATH  Google Scholar 

  118. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6_8

    Chapter  Google Scholar 

  119. Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph partitioning: a survey. In: 13th Genetic and Evolutionary Computation (GECCO), pp. 473–480. ACM (2011). http://doi.acm.org/10.1145/2001576.2001642

  120. Kim, Y.M., Lai, T.H.: The complexity of congestion-1 embedding in a hypercube. J. Algorithms 12(2), 246–280 (1991). http://www.sciencedirect.com/science/article/pii/019667749190004I

    Article  MathSciNet  MATH  Google Scholar 

  121. Kirmani, S., Raghavan, P.: Scalable parallel graph partitioning. In: High Performance Computing, Networking, Storage and Analysis, SC 2013. ACM (2013)

    Google Scholar 

  122. Korosec, P., Silc, J., Robic, B.: Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Comput. 30(5–6), 785–801 (2004)

    Article  MATH  Google Scholar 

  123. Kunegis, J.: KONECT - the Koblenz network collection. In: Web Observatory Workshop, pp. 1343–1350 (2013)

    Google Scholar 

  124. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partioning and data set parametrization. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1393–1403 (2006)

    Article  Google Scholar 

  125. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45(4), 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  126. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  127. Lang, K., Rao, S.: A flow-based method for improving the expansion or conductance of graph cuts. In: Bienstock, D., Nemhauser, G. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 325–337. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25960-2_25

    Chapter  Google Scholar 

  128. Lasalle, D., Karypis, G.: Multi-threaded graph partitioning. In: 27th International Parallel and Distributed Processing Symposium (IPDPS), pp. 225–236 (2013)

    Google Scholar 

  129. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Münster GI-Days (2004)

    Google Scholar 

  130. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, Burlington (1992)

    MATH  Google Scholar 

  131. Lescovec, J.: Stanford network analysis package (SNAP). http://snap.stanford.edu/index.html

  132. Li, H., Rosenwald, G., Jung, J., Liu, C.C.: Strategic power infrastructure defense. Proc. IEEE 93(5), 918–933 (2005)

    Article  Google Scholar 

  133. Li, J., Liu, C.C.: Power system reconfiguration based on multilevel graph partitioning. In: PowerTech, pp. 1–5 (2009)

    Google Scholar 

  134. Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program. 95(1), 91–101 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  135. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  136. Lovász, L.: Random walks on graphs: a survey. Comb. Paul Erdös is Eighty 2, 1–46 (1993)

    Google Scholar 

  137. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed GraphLab: a framework for machine learning in the cloud. PVLDB 5(8), 716–727 (2012)

    Google Scholar 

  138. Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road networks. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 260–270. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30850-5_23

    Chapter  Google Scholar 

  139. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 135–146. ACM (2010)

    Google Scholar 

  140. Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72845-0_19

    Chapter  Google Scholar 

  141. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using precomputed cluster distances. ACM J. Exp. Algorithmics 14, 3.2:1–3.2:27 (2009)

    MathSciNet  MATH  Google Scholar 

  142. Meuer, H., Strohmaier, E., Simon, H., Dongarra, J.: June 2013 — TOP500 supercomputer sites. http://top.500.org/lists/2013/06/

  143. Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel algorithm for computing graph partitions. J. Parallel Distrib. Comput. 69(9), 750–761 (2009)

    Article  Google Scholar 

  144. Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS), p. 57 (CD) (2006)

    Google Scholar 

  145. Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 351–363. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07959-2_30

    Google Scholar 

  146. Meyerhenke, H.: Disturbed diffusive processes for solving partitioning problems on graphs. Ph.D. thesis, Universität Paderborn (2008)

    Google Scholar 

  147. Meyerhenke, H.: Shape optimizing load balancing for MPI-parallel adaptive numerical simulations. In: Bader et al. [13], pp. 67–82

    Google Scholar 

  148. Meyerhenke, H., Monien, B., Schamberger, S.: Graph partitioning and disturbed diffusion. Parallel Comput. 35(10–11), 544–569 (2009)

    Article  Google Scholar 

  149. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex networks. In: Proceeding of the 29th IEEE International Parallel & Distributed Processing Symposium, (IPDPS 2015) (2015 to appear). Preliminary version: http://arxiv.org/abs/1404.4797

  150. Meyerhenke, H., Sauerwald, T.: Beyond good partition shapes: an analysis of diffusive graph partitioning. Algorithmica 64(3), 329–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  151. Meyerhenke, H., Schamberger, S.: Balancing parallel adaptive FEM computations by solving systems of linear equations. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 209–219. Springer, Heidelberg (2005). doi:10.1007/11549468_26

    Chapter  Google Scholar 

  152. Miller, G., Teng, S.H., Vavasis, S.: A unified geometric approach to graph separators. In: 32nd Symposium on Foundations of Computer Science (FOCS), pp. 538–547 (1991)

    Google Scholar 

  153. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speedup Dijkstra’s algorithm. ACM J. Exp. Algorithmics 11, 1–29 (2006, 2007)

    Google Scholar 

  154. Mondaini, R.: Biomat 2009: International Symposium on Mathematical and Computational Biology, Brasilia, Brazil, 1–6. World Scientific (2010). http://books.google.es/books?id=3tiLMKtXiZwC

  155. Monien, B., Schamberger, S.: Graph partitioning with the party library: helpful-sets in practice. In: 16th Symposium on Computer Architecture and High Performance Computing, pp. 198–205 (2004)

    Google Scholar 

  156. Monien, B., Preis, R., Schamberger, S.: Approximation algorithms for multilevel graph partitioning. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, chap. 60, pp. 60-1–60-15. Taylor & Francis, Abingdon (2007)

    Google Scholar 

  157. Moulitsas, I., Karypis, G.: Architecture aware partitioning algorithms. In: Bourgeois, A.G., Zheng, S.Q. (eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 42–53. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69501-1_6

    Chapter  Google Scholar 

  158. Newman, M.E.J.: Community detection and graph partitioning. CoRR abs/1305.4974 (2013)

    Google Scholar 

  159. Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)

    Book  MATH  Google Scholar 

  160. Nishimura, J., Ugander, J.: Restreaming graph partitioning: simple versatile algorithms for advanced balancing. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2013)

    Google Scholar 

  161. Osipov, V., Sanders, P.: n-level graph partitioning. In: Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15775-2_24

    Chapter  Google Scholar 

  162. Papa, D.A., Markov, I.L.: Hypergraph partitioning and clustering. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, chap. 61, pp. 61-1–61-19. CRC Press, Boca Raton (2007)

    Google Scholar 

  163. Pellegrini, F.: Scotch home page. http://www.labri.fr/pelegrin/scotch

  164. Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and architecture graphs. In: Scalable High-Performance Computing Conference (SHPCC), pp. 486–493. IEEE, May 1994

    Google Scholar 

  165. Pellegrini, F.: A parallelisable multi-level banded diffusion scheme for computing balanced partitions with smooth boundaries. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 195–204. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74466-5_22

    Chapter  Google Scholar 

  166. Pellegrini, F.: Scotch and libScotch 5.0 user’s guide. Technical report, LaBRI, Université Bordeaux I, December 2007

    Google Scholar 

  167. Pellegrini, F.: Static mapping of process graphs. In: Bichot, C.E., Siarry, P. (eds.) Graph Partitioning, chap. 5, pp. 115–136. Wiley, Hoboken (2011)

    Google Scholar 

  168. Pellegrini, F.: Scotch and PT-Scotch graph partitioning software: an overview. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, pp. 373–406. CRC Press, Boca Raton (2012)

    Chapter  Google Scholar 

  169. Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recognit. 46(3), 1020–1038 (2013)

    Article  Google Scholar 

  170. Pettie, S., Sanders, P.: A simpler linear time \(2/3-\epsilon \) approximation for maximum weight matching. Inf. Process. Lett. 91(6), 271–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  171. Pilkington, J.R., Baden, S.B.: Partitioning with space-filling curves. Technical report CS94-349, UC San Diego, Department of Computer Science and Engineering (1994)

    Google Scholar 

  172. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  173. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 259–269. Springer, Heidelberg (1999). doi:10.1007/3-540-49116-3_24

    Chapter  Google Scholar 

  174. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3) (2007)

    Google Scholar 

  175. Rolland, E., Pirkul, H., Glover, F.: Tabu search for graph partitioning. Ann. Oper. Res. 63(2), 209–232 (1996)

    Article  MATH  Google Scholar 

  176. Ron, D., Wishko-Stern, S., Brandt, A.: An algebraic multigrid based algorithm for bisectioning general graphs. Technical report MCS05-01, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science (2005)

    Google Scholar 

  177. Ron, D., Safro, I., Brandt, A.: A fast multigrid algorithm for energy minimization under planar density constraints. Multiscale Model. Simul. 8(5), 1599–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  178. Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph organization. Multiscale Model. Simul. 9(1), 407–423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  179. Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph partitioning. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 369–380. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  180. Safro, I., Temkin, B.: Multiscale approach for the network compression-friendly ordering. J. Discret. Algorithms 9(2), 190–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  181. Salihoglu, S., Widom, J.: GPS: a graph processing system. In: Proceedings of the 25th International Conference on Scientific and Statistical Database Management, SSDBM, pp. 22:1–22:12. ACM (2013). http://doi.acm.org/10.1145/2484838.2484843

  182. Sanchis, L.A.: Multiple-way network partitioning. IEEE Trans. Comput. 38(1), 62–81 (1989)

    Article  MATH  Google Scholar 

  183. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_40

    Chapter  Google Scholar 

  184. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: 12th Workshop on Algorithm Engineering and Experimentation (ALENEX), pp. 16–29 (2012)

    Google Scholar 

  185. Sanders, P., Schulz, C.: High quality graph partitioning. In: Bader et al. [13], pp. 19–36

    Google Scholar 

  186. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph partitioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_16

    Chapter  Google Scholar 

  187. Sanders, P., Schulz, C.: KaHIP - Karlsruhe High Quality Partitioning Homepage. http://algo2.iti.kit.edu/documents/kahip/index.html

  188. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64. http://dx.doi.org/10.1016/j.cosrev.2007.05.001

    Google Scholar 

  189. Schamberger, S.: On partitioning FEM graphs using diffusion. In: HPGC Workshop of the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004). IEEE Computer Society (2004)

    Google Scholar 

  190. Schamberger, S., Wierum, J.M.: A locality preserving graph ordering approach for implicit partitioning: graph-filling curves. In: 17th International Conference on Parallel and Distributed Computing Systems (PDCS), ISCA, pp. 51–57 (2004)

    Google Scholar 

  191. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance scientific simulations. In: Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A. (eds.) Sourcebook of parallel computing, pp. 491–541. Morgan Kaufmann Publishers, Burlington (2003)

    Google Scholar 

  192. Schloegel, K., Karypis, G., Kumar, V.: Multilevel diffusion schemes for repartitioning of adaptive meshes. J. Parallel Distrib. Comput. 47(2), 109–124 (1997)

    Article  MATH  Google Scholar 

  193. Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing adaptive scientific simulations. In: Supercomputing 2000, p. 59 (CD). IEEE Computer Society (2000)

    Google Scholar 

  194. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint graph partitioning. Concurr. Comput.: Pract. Exp. 14(3), 219–240 (2002)

    Article  MATH  Google Scholar 

  195. Schulz, C.: High quality graph partititioning. Ph.D. thesis. epubli GmbH (2013)

    Google Scholar 

  196. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002). doi:10.1007/3-540-45643-0_4

    Chapter  Google Scholar 

  197. Sellmann, M., Sensen, N., Timajev, L.: Multicommodity flow approximation used for exact graph partitioning. In: Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 752–764. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39658-1_67

    Chapter  Google Scholar 

  198. Sensen, N.: Lower bounds and exact algorithms for the graph partitioning problem using multicommodity flows. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 391–403. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1_33

    Chapter  Google Scholar 

  199. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19328-6_1

    Chapter  Google Scholar 

  200. Simon, H.D.: Partitioning of unstructured problems for parallel processing. Comput. Syst. Eng. 2(2), 135–148 (1991)

    Article  Google Scholar 

  201. Simon, H.D., Teng, S.H.: How good is recursive bisection? SIAM J. Sci. Comput. 18(5), 1436–1445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  202. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimisation approach to graph-partitioning. J. Glob. Optim. 29(2), 225–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  203. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs. In: 18th ACM SIGKDD International Conference on Knowledge discovery and data mining (KDD), pp. 1222–1230. ACM (2012)

    Google Scholar 

  204. Stock, L.: Strategic logistics management. Cram101 Textbook Outlines, Lightning Source Inc. (2006). http://books.google.com/books?id=1LyCAQAACAAJ

  205. Sui, X., Nguyen, D., Burtscher, M., Pingali, K.: Parallel graph partitioning on multicore architectures. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 246–260. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19595-2_17

    Chapter  Google Scholar 

  206. Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community evolution in dynamic multi-mode networks. In: 14th ACM SIGKDD International Conference on Knowledge discovery and data mining (KDD), pp. 677–685. ACM (2008)

    Google Scholar 

  207. Teresco, J., Beall, M., Flaherty, J., Shephard, M.: A hierarchical partition model for adaptive finite element computation. Comput. Method. Appl. Mech. Eng. 184(2–4), 269–285 (2000). http://www.sciencedirect.com/science/article/pii/S0045782599002315

    Google Scholar 

  208. Trifunović, A., Knottenbelt, W.J.: Parallel multilevel algorithms for hypergraph partitioning. J. Parallel Distrib. Comput. 68(5), 563–581 (2008)

    Article  MATH  Google Scholar 

  209. Tsourakakis, C.E., Gkantsidis, C., Radunovic, B., Vojnovic, M.: Fennel: streaming graph partitioning for massive scale graphs. Technical report MSR-TR-2012-113, Microsoft Research (2000)

    Google Scholar 

  210. Ucar, B., Aykanat, C., Kaya, K., Ikinci, M.: Task assignment in heterogeneous computing systems. J. Parallel Distrib. Comput. 66(1), 32–46 (2006). http://www.sciencedirect.com/science/article/pii/S0743731505001577

    Google Scholar 

  211. Wagner, D., Wagner, F.: Between min cut and graph bisection. In: Borzyszkowski, A.M., Sokołowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 744–750. Springer, Heidelberg (1993). doi:10.1007/3-540-57182-5_65

    Chapter  Google Scholar 

  212. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann. Oper. Res. 131(1), 325–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  213. Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement algorithm. SIAM J. Sci. Comput. 22(1), 63–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  214. Walshaw, C., Cross, M.: Parallel mesh partitioning on distributed memory systems. In: Topping, B. (ed.) Computational Mechanics Using High Performance Computing, pp. 59–78. Saxe-Coburg Publications, Stirling (2002). Invited chapter

    Chapter  Google Scholar 

  215. Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software - an overview. In: Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58. Civil-Comp Ltd. (2007)

    Google Scholar 

  216. Walshaw, C., Cross, M., Everett, M.G.: A localized algorithm for optimizing unstructured mesh partitions. J. High Perform. Comput. Appl. 9(4), 280–295 (1995)

    Article  Google Scholar 

  217. Walshaw, C.: Variable partition inertia: graph repartitioning and load balancing for adaptive meshes. In: Parashar, M., Li, X. (eds.) Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, pp. 357–380. Wiley Online Library, Hoboken (2010)

    Google Scholar 

  218. Walshaw, C., Cross, M.: Multilevel mesh partitioning for heterogeneous communication networks. Future Gener. Comp. Syst. 17(5), 601–623 (2001)

    Article  Google Scholar 

  219. Walshaw, C., Cross, M., Everett, M.G.: Dynamic load-balancing for parallel adaptive unstructured meshes. In: Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing (PPSC 1997) (1997)

    Google Scholar 

  220. Laboratory of Web Algorithms, University of Macedonia: Datasets. http://law.dsi.unimi.it/datasets.php, http://law.dsi.unimi.it/datasets.php

  221. Williams, R.D.: Performance of dynamic load balancing algorithms for unstructured mesh calculations. Concurr.: Pract. Exp. 3(5), 457–481 (1991)

    Article  Google Scholar 

  222. Zhou, M., Sahni, O., et al.: Controlling unstructured mesh partitions for massively parallel simulations. SIAM J. Sci. Comput. 32(6), 3201–3227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  223. Zumbusch, G.: Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing. Teubner, Stuttgart (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Bruce Hendrickson, Dominique LaSalle, and George Karypis for many valuable comments on a preliminary draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C. (2016). Recent Advances in Graph Partitioning. In: Kliemann, L., Sanders, P. (eds) Algorithm Engineering. Lecture Notes in Computer Science(), vol 9220. Springer, Cham. https://doi.org/10.1007/978-3-319-49487-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49487-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49486-9

  • Online ISBN: 978-3-319-49487-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics