[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Linear Weight Transfer Rule for Local Search

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2023)

Abstract

The Divide and Distribute Fixed Weights algorithm (ddfw) is a dynamic local search SAT-solving algorithm that transfers weight from satisfied to falsified clauses in local minima. ddfw is remarkably effective on several hard combinatorial instances. Yet, despite its success, it has received little study since its debut in 2005. In this paper, we propose three modifications to the base algorithm: a linear weight transfer method that moves a dynamic amount of weight between clauses in local minima, an adjustment to how satisfied clauses are chosen in local minima to give weight, and a weighted-random method of selecting variables to flip. We implemented our modifications to ddfw on top of the solver yalsat. Our experiments show that our modifications boost the performance compared to the original ddfw algorithm on multiple benchmarks, including those from the past three years of SAT competitions. Moreover, our improved solver exclusively solves hard combinatorial instances that refute a conjecture on the lower bound of two Van der Waerden numbers set forth by Ahmed et al. (2014), and it performs well on a hard graph-coloring instance that has been open for over three decades.

The authors were supported by NSF grant CCF-2006363. Md Solimul Chowdhury was partially supported by a NSERC Postdoctoral Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To the best of our knowledge, there is no official implementation or binary of original ddfw [16] available.

  2. 2.

    Source code of our system are available at https://github.com/solimul/yal-lin

  3. 3.

    https://github.com/marijnheule/benchmarks

  4. 4.

    The PAR-2 score is defined as the average solving time, while taking 2 * timeout as the time for unsolved instances. A lower score is better.

  5. 5.

    Results for additional experiments with a different seed is available at: https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf

References

  1. Aaron Stump, Geoff Sutcliffe, C.T.: StarExec. https://www.starexec.org/starexec/public/about.jsp (2013)

  2. Ahmed, T., Kullmann, O., Snevily, H.S.: On the van der Waerden numbers w(2; 3, t). Discrete Applied Mathematics 174, 27–51 (2014). https://doi.org/10.1016/j.dam.2014.05.007

    Article  MathSciNet  MATH  Google Scholar 

  3. Balint, A.: Engineering stochastic local search for the satisfiability problem. Ph.D. thesis, University of Ulm (2014)

    Google Scholar 

  4. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands (2009)

    Google Scholar 

  5. Biere, A.: YalSAT Yet Another Local Search Solver. http://fmv.jku.at/yalsat/ (2010)

  6. Brown, S., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N.: Bridges-2: A platform for rapidly-evolving and data intensive research. In: Association for Computing Machinery, New York, NY, USA. pp. 1–4 (2021)

    Google Scholar 

  7. Cai, S., Luo, C., Su, K.: CCAnr: A configuration checking based local search solver for non-random satisfiability. In: Heule, M., Weaver, S. (eds.) Theory and Applications of Satisfiability Testing - SAT 2015, pp. 1–8. Springer International Publishing, Cham (2015)

    Google Scholar 

  8. Cai, S., Zhang, X., Fleury, M., Biere, A.: Better Decision Heuristics in CDCL through Local Search and Target Phases. Journal of Artificial Intelligence Research 74, 1515–1563 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Codel, C.R., Heule, M.J.: A Study of Divide and Distribute Fixed Weights and its Variants. In: Pragmatics of SAT 2021 (2021)

    Google Scholar 

  10. Feng, N., Bacchus, F.: Clause size reduction with all-UIP learning. In: Pulina, L., Seidl, M. (eds.) Proceedings of SAT-2020. pp. 28–45 (2020)

    Google Scholar 

  11. Green, B.: New lower bounds for van der Waerden numbers (2021). https://doi.org/10.48550/ARXIV.2102.01543

  12. Gupta, A., Ganai, M.K., Wang, C.: SAT-based verification methods and applications in hardware verification. In: Proceedings of SFM 2006. pp. 108–143 (2006)

    Google Scholar 

  13. Heule, M.J.H., Karahalios, A., van Hoeve, W.: From cliques to colorings and back again. In: Proceedings of CP-2022. pp. 26:1–26:10 (2022)

    Google Scholar 

  14. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3x3-matrices. J. Symb. Comput. 104, 899–916 (2019)

    Article  MATH  Google Scholar 

  15. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT. In: Hentenryck, P.V. (ed.) Proceedings of CP 2002. pp. 233–248 (2002)

    Google Scholar 

  16. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight redistribution in local search for SAT. In: Proceedings of CP-2005. pp. 772–776. Lecture Notes in Computer Science (2005)

    Google Scholar 

  17. Johnson, D.J., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11–13, 1993. American Mathematical Society, USA (1996)

    Book  MATH  Google Scholar 

  18. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence. p. 359–363. ECAI ’92, John Wiley & Sons Inc, USA (1992)

    Google Scholar 

  19. Li, C.M., Li, Y.: Satisfying versus falsifying in local search for satisfiability. In: Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing – SAT 2012. pp. 477–478. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

    Google Scholar 

  20. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of DAC 2001. pp. 530–535 (2001)

    Google Scholar 

  21. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Solving large steiner triple covering problems. Operations Research Letters 39(2), 127–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schreiber, D., Sanders, P.: Scalable SAT solving in the cloud. In: Li, C.M., Manyà, F. (eds.) Theory and Applications of Satisfiability Testing – SAT 2021. pp. 518–534. Springer International Publishing, Cham (2021)

    Google Scholar 

  23. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop 1993. pp. 521–532 (1993)

    Google Scholar 

  24. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: Proceedings of AAAI 1992. pp. 440–446 (1992)

    Google Scholar 

  25. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Proceedings of SAT 2009. pp. 244–257 (2009)

    Google Scholar 

  27. Thornton, J., Pham, D.N., Bain, S., Jr., V.F.: Additive versus multiplicative clause weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of AAAI-2004. pp. 191–196 (2004)

    Google Scholar 

  28. Tompkins, D.: Dynamic Local Search for SAT: Design, Insights and Analysis. Ph.D. thesis, The University of British Columbia (2010)

    Google Scholar 

  29. Tompkins, D.: UBCSAT. http://ubcsat.dtompkins.com/home (2010)

  30. van der Waerden, B.L.: Beweis einer baudet’schen vermutung. J. Symb. Comput. 15, 212–216 (1927)

    MATH  Google Scholar 

  31. Xindi Zhang, Shaowei Cai, Z.C.: Improving CDCL via Local Search. In: SAT Competition-2021. pp. 42–43 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Solimul Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chowdhury, M.S., Codel, C.R., Heule, M.J.H. (2023). A Linear Weight Transfer Rule for Local Search. In: Rozier, K.Y., Chaudhuri, S. (eds) NASA Formal Methods. NFM 2023. Lecture Notes in Computer Science, vol 13903. Springer, Cham. https://doi.org/10.1007/978-3-031-33170-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33170-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33169-5

  • Online ISBN: 978-3-031-33170-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics