Abstract
Reconstructing 3D human pose and shape from monocular videos is a well-studied but challenging problem. Common challenges include occlusions, the inherent ambiguities in the 2D to 3D mapping and the computational complexity of video processing. Existing methods ignore the ambiguities of the reconstruction and provide a single deterministic estimate for the 3D pose. In order to address these issues, we present a Temporal Attention based Probabilistic human pose and shape Estimation method (TAPE) that operates on an RGB video. More specifically, we propose to use a neural network to encode video frames to temporal features using an attention-based neural network. Given these features, we output a per-frame but temporally-informed probability distribution for the human pose using Normalizing Flows. We show that TAPE outperforms state-of-the-art methods in standard benchmarks and serves as an effective video-based prior for optimization-based human pose and shape estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biggs, B., Ehrhart, S., Joo, H., Graham, B., Vedaldi, A., Novotny, D.: 3D multibodies: Fitting sets of plausible 3D models to ambiguous image data. In: NeurIPS (2020)
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3d human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34
Ionescu, C., Fuxin Li, C.S.: Latent structured models for human pose estimation. In: International Conference on Computer Vision (2011)
Choi, H., Moon, G., Chang, J.Y., Lee, K.M.: Beyond static features for temporally consistent 3d human pose and shape from a video. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M.J.: Monocular expressive body regression through body-driven attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 20–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_2
Georgakis, G., Li, R., Karanam, S., Chen, T., Košecká, J., Wu, Z.: Hierarchical kinematic human mesh recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 768–784. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_45
Guler, R.A., Kokkinos, I.: Holopose: Holistic 3d human reconstruction in-the-wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10884–10894 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Patt. Anal. Mach. Intell. 36(7), 1325–1339 (2014)
Jiang, W., Kolotouros, N., Pavlakos, G., Zhou, X., Daniilidis, K.: Coherent reconstruction of multiple humans from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588 (2020)
Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3d human pose fitting towards in-the-wild 3d human pose estimation. In: 3DV (2020)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video. In: Computer Vision and Pattern Recognition (CVPR) (2019)
Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: Video inference for human body pose and shape estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: ICCV (2019)
Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: CVPR (2019)
Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4501–4510 (2019)
Kolotouros, N., Pavlakos, G., Jayaraman, D., Daniilidis, K.: Probabilistic modeling for human mesh recovery. In: ICCV (2021)
Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: Closing the loop between 3d and 2d human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6050–6059 (2017)
Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: CVPR (2021)
Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: ICCV (2021)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)
Loper, M.M., Mahmood, N., Black, M.J.: MoSh: Motion and shape capture from sparse markers. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 33(6), 220:1–220:13 (2014). https://doi.org/10.1145/2661229.2661273
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: Archive of motion capture as surface shapes. In: International Conference on Computer Vision, pp. 5442–5451 (Oct 2019)
von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using imus and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37
Mehta, D., et al.: Monocular 3d human pose estimation in the wild using improved cnn supervision. In: 3D Vision (3DV), 2017 Fifth International Conference on. IEEE (2017). https://doi.org/10.1109/3dv.2017.00064, http://gvv.mpi-inf.mpg.de/3dhp_dataset
Muller, L., Osman, A.A., Tang, S., Huang, C.H.P., Black, M.J.: On self-contact and human pose. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9990–9999 (2021)
Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: Unifying deep learning and model based human pose and shape estimation. In: 2018 International Conference on 3D vision (3DV), pp. 484–494. IEEE (2018)
Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Pavlakos, G., Kolotouros, N., Daniilidis, K.: Texturepose: Supervising human mesh estimation with texture consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 803–812 (2019)
Sengupta, A., Budvytis, I., Cipolla, R.: Hierarchical kinematic probability distributions for 3d human shape and pose estimation from images in the wild. In: International Conference on Computer Vision (October 2021)
Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR (2016)
Wei, W.L., Lin, J.C., Liu, T.L., Liao, H.Y.M.: Capturing humans in motion: Temporal-attentive 3d human pose and shape estimation from monocular video. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2022)
Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and hands in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10965–10974 (2019)
Zhang, W., Zhu, M., Derpanis, K.G.: From actemes to action: A strongly-supervised representation for detailed action understanding. In: 2013 IEEE International Conference on Computer Vision, pp. 2248–2255 (2013). https://doi.org/10.1109/ICCV.2013.280
Zhou, Y., Barnes, C., Jingwan, L., Jimei, Y., Hao, L.: On the continuity of rotation representations in neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)
Acknowledgements
This work is partially supported by the Greek Secretariat for Research and Innovation and the EU, Project SignGuide: Automated Museum Guidance using Sign Language T2EDK-00982 within the framework of “Competitiveness, Entrepreneurship and Innovation" (EPAnEK) Operational Programme 2014-2020. It was also partially supported by the Hellenic Foundation for Research and Innovation (HFRI) under the “1st Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment”, project I.C.Humans, number 91.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vasilikopoulos, N., Kolotouros, N., Tsoli, A., Argyros, A. (2023). TAPE: Temporal Attention-Based Probabilistic Human Pose and Shape Estimation. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-31438-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31437-7
Online ISBN: 978-3-031-31438-4
eBook Packages: Computer ScienceComputer Science (R0)