[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decision-Making in Orthognathic Surgery by Virtual Planning and Execution

  • Chapter
  • First Online:
Fundamentals of Craniofacial Malformations

Abstract

Computer-aided surgical simulations using digital data have revolutionized orthodontics and have been adapted for orthognathic surgery to facilitate cephalometric analysis, surgical simulation, and fabrication of splints. Planning of bone movements in a virtual environment is needed in orthognathic surgery of complex cases much more than in conventional patient’s situations. The inclusion of skull bone data (generated by computed tomography (CT) or cone beam computed tomography (CBCT) images), dental and occlusal data (gained through intraoral or dental cast scanners), and facial surface texture data (generated by optical surface scanners) enables a high-resolution phenotyping of patients. Modern software with precise matching programs allow integration of these data to one model. Surgical simulation can be done for all anatomical locations and in all spatial directions. The planning of jaw movements is generally based on the standards of orthognathic surgery treatment protocols, but surgery is much more challenging. Technological advances in 3D printing can be used to fabricate custom positioning splints or prefabricated cutting/drilling devices and osteosynthesis plates. These developments can be integrated in a digital workflow to enable the intraoperative jaw positioning in all three space levels. Through this approach, orthognathic surgical results can be dramatically improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reyneke JP. Essentials of orthognathic surgery. Quintessence; 2010.

    Google Scholar 

  2. Xia J, Ip HHS, Samman N, Wang D, Kot CSB, Yeung RWK, Tideman H. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. J Oral Maxillofac Surg. 2000;29:11–7.

    Article  CAS  Google Scholar 

  3. Assael LA. The biggest movement: orthognathic surgery undergoes another paradigm shift. J Oral Maxillofac Surg. 2008;66:419–20.

    Article  PubMed  Google Scholar 

  4. Bell RB. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22:135–56.

    Article  PubMed  Google Scholar 

  5. McCormick SU, Drew SJ. Virtual model surgery for efficient planning and surgical performance. J Oral Maxillofac Surg. 2011;69:638–44.

    Article  PubMed  Google Scholar 

  6. Baker SB, Goldstein JA, Seruya M. Outcomes in computer-assisted surgical simulation for orthognathic surgery. J Craniofac Surg. 2012;23:509–13.

    Article  PubMed  Google Scholar 

  7. Mori Y, Shimizu H, Minami K, Kwon TG, Mano T. Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data. Oral Maxillofac Surg. 2011;15:131–8.

    Article  PubMed  Google Scholar 

  8. Zinser MJ, Mischkowski RA, Dreiseidler T, Thamm OC, Rothamel D, Zoller JE. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Br J Oral Maxillofac Surg. 2013;51:827–33.

    Article  PubMed  Google Scholar 

  9. Farrell BB, Franco PB, Tucker MR. Virtual surgical planning in orthognathic surgery. Oral Maxillofac Surg Clin North Am. 2014;26:459–73.

    Article  PubMed  Google Scholar 

  10. Lin HH, Lo LJ. Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: a literature review. J Formos Med Assoc. 2015;114:300–7.

    Article  PubMed  Google Scholar 

  11. Rubio-Palau J, Prieto-Gundin A, Cazalla AA, Serrano MB, Fructuoso GG, Ferrandis FP, Baro AR. Three-dimensional planning in craniomaxillofacial surgery. Ann Maxillofac Surg. 2016;6:281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fawzy HH, Choi JW. Evaluation of virtual surgical plan applicability in 3D simulation-guided two-jaw surgery. J Craniomaxillofac Surg. 2019;47:860–6.

    Article  PubMed  Google Scholar 

  13. Freina L, Ott M. A literature review on immersive virtual reality in education: state of the art and perspectives; Computer Science. 2015, Corpus ID: 17385833.

    Google Scholar 

  14. Epker BN, Wylie GA. Control of the condylar-proximal mandibular segments after sagittal split osteotomies to advance the mandible. Oral Surg Oral Med Oral Pathol. 1986;62:613–7.

    Article  CAS  PubMed  Google Scholar 

  15. Bettega G, Dessenne V, Raphael B, Cinquin P. Computer-assisted mandibular condyle positioning in orthognathic surgery. J Oral Maxillofac Surg. 1996;54:553–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lee W, Park JU. Three-dimensional evaluation of positional change of the condyle after mandibular setback by means of bilateral sagittal split ramus osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:305–9.

    Article  PubMed  Google Scholar 

  17. Nishimura A, Sakurada S, Iwase M, Nagumo M. Positional changes in the mandibular condyle and amount of mouth opening after sagittal split ramus osteotomy with rigid or nonrigid osteosynthesis. J Oral Maxillofac Surg. 1997;55:672–6; discussion 677–678.

    Article  CAS  PubMed  Google Scholar 

  18. Ellis E 3rd. A method to passively align the sagittal ramus osteotomy segments. J Oral Maxillofac Surg. 2007;65:2125–30.

    Article  PubMed  Google Scholar 

  19. Xi T, de Koning M, Berge S, Hoppenreijs T, Maal T. The role of mandibular proximal segment rotations on skeletal relapse and condylar remodelling following bilateral sagittal split advancement osteotomies. J Craniomaxillofacial Surg. 2015;43:1716–22.

    Article  Google Scholar 

  20. Aboul-Hosn Centenero S, Hernandez-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results—our experience in 16 cases. J Craniomaxillofac Surg. 2012;40:162–8.

    Article  PubMed  Google Scholar 

  21. Bartella AK, Kamal M, Scholl I, Steegmann J, Ketelsen D, Holzle F, et al. Virtual reality in preoperative imaging in maxillofacial surgery: implementation of “the next level”. Br J Oral Maxillofac Surg. 2019;57(7):644–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg. 2017;44(3):179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Naudi K, Benramdan R, Brocklebank L, Khambay B, Ayoub A. The virtual human face—superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac Surg. 2013;42(3):393–400.

    Article  CAS  PubMed  Google Scholar 

  24. Maliha SG, Diaz-Siso JR, Plana NM, Torrie A, Flores RL. Haptic, physical and web-based simulators: are they underused in maxillary surgery training. J Oral Maxillofac Surg. 2018;76(11):2424.e1–2424.e11.

    Article  PubMed  Google Scholar 

  25. Zinser MJ, Sailer HF, Ritter L, Braumann B, Maegele M, Zoller JE. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J Oral Maxillofac Surg. 2013;71(2151):e1–e21.

    Google Scholar 

  26. Alkhaye A, Piffkó J, Lippold C, Segatto E. Accuracy of virtual planning in orthognathic surgery: a systematic review. Head Face Med. 2020;16(1):34.

    Article  Google Scholar 

  27. Metzger MC, Hohlweg-Majert B, Schwarz U, Teschner M, Hammer B, Schmelzeisen R. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:e1–7.

    Article  PubMed  Google Scholar 

  28. Bai S, Bo B, Bi Y, Wang B, Zhao J, Liu Y, et al. CAD/CAM surface templates as an alternative to the intermediate wafer in orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e1–7.

    Article  PubMed  Google Scholar 

  29. Zinser MJ, Mischkowski RA, Sailer HF, Zoller JE. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:673–87.

    Article  PubMed  Google Scholar 

  30. Vale F, Scherzberg J, Cavaleiro J, Sanz D, Caramelo F, Malo L, Marcelino JP. 3D virtual planning in orthognathic surgery and CAD/CAM surgical splints generation in one patient with craniofacial microsomia: a case report. Dental Press J Orthod. 2016;21:89–100.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46:67–71.

    Article  CAS  PubMed  Google Scholar 

  32. Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery—a literature review. J Formos Med Assoc. 2018;117:547–58.

    Article  PubMed  Google Scholar 

  33. Uribe F, Janakiraman N, Shafer D, Nanda R. Three-dimensional cone-beam computed tomography-based virtual treatment planning and fabrication of a surgical splint for asymmetric patients: surgery first approach. Am J Orthod Dentofac Orthop. 2013;144:748–58.

    Article  Google Scholar 

  34. Baan F, Liebregts J, Xi T, Schreurs R, de Koning M, Berge S, et al. A new 3D tool for assessing the accuracy of bimaxillary surgery: the OrthoGnathicAnalyser. PLoS One. 2016;11:e0149625.

    Article  PubMed  PubMed Central  Google Scholar 

  35. De Riu G, Virdis PI, Meloni SM, Lumbau A, Vaira LA. Accuracy of computer-assisted orthognathic surgery. J Craniomaxillofac Surg. 2017;46:293–8.

    Article  PubMed  Google Scholar 

  36. Zhang N, Liu S, Hu Z, Hu J, Zhu S, Li Y. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122:143–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, U., Valentin, K. (2023). Decision-Making in Orthognathic Surgery by Virtual Planning and Execution. In: Meyer, U. (eds) Fundamentals of Craniofacial Malformations. Springer, Cham. https://doi.org/10.1007/978-3-031-28069-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28069-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28068-9

  • Online ISBN: 978-3-031-28069-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics