[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Fuzzy-Based Approach for Selection of Radio Access Technologies in 5G Wireless Networks

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2023)

Abstract

The 5-th Generation (5G) heterogeneous networks are expected to provide dense network services and a plethora of different networks for fulfilling the user requirements and are supposed to give User Equipment (UE) the ability to connect with the appropriate Radio Access Technology (RAT). However, for the selection of RAT many parameters should be considered, which make the problem HP-hard. For this reason, in this paper, we propose a Fuzzy-based RATs Selection System (FRSS) considering three parameters: Coverage (CV), User Priority (UP) and Spectral Efficiency (SE). From simulation results, we found that when CV, UP and SE are increased, the RAT Decision Value (RDV) parameter value is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.J., Lopez-Soler, J.M.: A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutorials 22(2), 905–929 (2020). https://doi.org/10.1109/COMST.2020.2971781

    Article  Google Scholar 

  2. Pham, Q.V., et al.: A survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art. IEEE Access 8, 116, 974–117, 017 (2020). https://doi.org/10.1109/ACCESS.2020.3001277

  3. Orsino, A., Araniti, G., Molinaro, A., Iera, A.: Effective rat selection approach for 5G dense wireless networks. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015). https://doi.org/10.1109/VTCSpring.2015.7145798

  4. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)

    Article  Google Scholar 

  5. Palmieri, F.: A reliability and latency-aware routing framework for 5G transport infrastructures. Computer Networks 179 (9), Article 107365 (2020). https://doi.org/10.1016/j.comnet.2020.107365

  6. Kamil, I.A., Ogundoyin, S.O.: Lightweight privacy-preserving power injection and communication over vehicular networks and 5G smart grid slice with provable security. Internet Things 8(100116), 100–116 (2019). https://doi.org/10.1016/j.iot.2019.100116

    Article  Google Scholar 

  7. Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrumentation Measurement Magazine 18, no. 3(3), 11–21 (2015). https://doi.org/10.1109/MIM.2015.7108393

  8. Vagionas, C., et al.: End-to-end real-time service provisioning over a SDN-controllable analog mmwave fiber-wireless 5g x-haul network. Journal of Lightwave Technology, pp. 1–10 (2023). https://doi.org/10.1109/JLT.2023.3234365

  9. Yao, D., Su, X., Liu, B., Zeng, J.: A mobile handover mechanism based on fuzzy logic and MPTCP protocol under SDN architecture*. In: 18th International Symposium on Communications and Information Technologies (ISCIT-2018), pp. 141–146 (2018). https://doi.org/10.1109/ISCIT.2018.8587956

  10. Lee, J., Yoo, Y.: Handover cell selection using user mobility information in a 5G SDN-based network. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN-2017), pp. 697–702 (2017). https://doi.org/10.1109/ICUFN.2017.7993880

  11. Moravejosharieh, A., Ahmadi, K., Ahmad, S.: A fuzzy logic approach to increase quality of service in software defined networking. In: 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN-2018), pp. 68–73 (2018). https://doi.org/10.1109/ICACCCN.2018.8748678

  12. Ampririt, P., Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L.: IFACS-Q3S-A new admission control system for 5G wireless networks based on fuzzy logic and its performance evaluation. Int. J. Distrib. Syst. Technol. (IJDST) 13(1), 1–25 (2022)

    Article  Google Scholar 

  13. Ampririt, P., Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L.: A fuzzy-based system for handover in 5G wireless networks considering network slicing constraints. In: Computational Intelligence in Security for Information Systems Conference, pp. 180–189. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08812-4_18

  14. Ampririt, P., Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L.: A fuzzy-based system for handover in 5G wireless networks considering different network slicing constraints: effects of slice reliability parameter on handover decision. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 27–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20029-8_3

  15. Ampririt, P., Ohara, S., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L.: An integrated fuzzy-based admission control system (IFACS) for 5G wireless networks: its implementation and performance evaluation. Internet of Things 13, 100, 351 (2021). https://doi.org/10.1016/j.iot.2020.100351

  16. Ampririt, P., Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L.: Application of fuzzy logic for slice QoS in 5G networks: a comparison study of two fuzzy-based schemes for admission control. Int. J. Mobile Comput. Multimedia Commun. (IJMCMC) 12(2), 18–35 (2021)

    Article  Google Scholar 

  17. Li, L.E., Mao, Z.M., Rexford, J.: Toward software-defined cellular networks. In: 2012 European Workshop on Software Defined Networking, pp. 7–12 (2012). https://doi.org/10.1109/EWSDN.2012.28

  18. Mousa, M., Bahaa-Eldin, A.M., Sobh, M.: Software defined networking concepts and challenges. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES-2016), pp. 79–90. IEEE (2016)

    Google Scholar 

  19. An, N., Kim, Y., Park, J., Kwon, D.H., Lim, H.: Slice management for quality of service differentiation in wireless network slicing. Sensors 19, 2745 (2019). https://doi.org/10.3390/s19122745

    Article  Google Scholar 

  20. Jiang, M., Condoluci, M., Mahmoodi, T.: Network slicing management & prioritization in 5G mobile systems. In: European Wireless 2016; 22th European Wireless Conference, pp. 1–6. VDE (2016)

    Google Scholar 

  21. Chen, J., et al.: Realizing dynamic network slice resource management based on SDN networks. In: 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA), pp. 120–125 (2019)

    Google Scholar 

  22. Li, X., et al.: Network slicing for 5G: challenges and opportunities. IEEE Internet Comput. 21(5), 20–27 (2017)

    Article  Google Scholar 

  23. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutorials 20(3), 2429–2453 (2018). https://doi.org/10.1109/COMST.2018.2815638

    Article  Google Scholar 

  24. Alliance, N.: Description of network slicing concept. NGMN 5G P 1(1), 7 Pages (2016). https://ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf

  25. Norp, T.: 5G requirements and key performance indicators. J. ICT Stand. 6(1), 15–30 (2018)

    Google Scholar 

  26. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency towards 5G: ran, core network and caching solutions. IEEE Commun. Surv. Tutorials 20(4), 3098–3130 (2018)

    Article  Google Scholar 

  27. Kim, Y., Park, J., Kwon, D., Lim, H.: Buffer management of virtualized network slices for quality-of-service satisfaction. In: 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN-2018), pp. 1–4 (2018)

    Google Scholar 

  28. Barolli, L., Koyama, A., Yamada, T., Yokoyama, S.: An integrated CAC and routing strategy for high-speed large-scale networks using cooperative agents. IPSJ J. 42(2), 222–233 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phudit Ampririt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ampririt, P., Ikeda, M., Matsuo, K., Barolli, L. (2023). A Fuzzy-Based Approach for Selection of Radio Access Technologies in 5G Wireless Networks. In: Barolli, L. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-031-26281-4_31

Download citation

Publish with us

Policies and ethics