Abstract
In this paper, we present 4 major contributions to ARX ciphers and in particular to the Salsa/ChaCha family of stream ciphers:
-
(a)
We propose an improved differential-linear distinguisher against ChaCha. To do so, we propose a new way to approach the derivation of linear approximations by viewing the algorithm in terms of simpler subrounds. Using this idea we show that it is possible to derive almost all linear approximations from previous works from just 3 simple rules. Furthermore, we show that with one extra rule it is possible to improve the linear approximations proposed by Coutinho and Souza at Eurocrypt 2021 [11].
-
(b)
We propose a technique called Bidirectional Linear Expansions (BLE) to improve attacks against Salsa. While previous works only considered linear expansions moving forward into the rounds, BLE explores the expansion of a single bit in both forward and backward directions. Applying BLE, we propose the first differential-linear distinguishers ranging 7 and 8 rounds of Salsa and we improve PNB key-recovery attacks against 8 rounds of Salsa.
-
(c)
Using all the knowledge acquired studying the cryptanalysis of these ciphers, we propose some modifications in order to provide better diffusion per round and higher resistance to cryptanalysis, leading to a new stream cipher named Forró. We show that Forró has higher security margin, this allows us to reduce the total number of rounds while maintaining the security level, thus creating a faster cipher in many platforms, specially in constrained devices.
-
(d)
Finally, we developed CryptDances, a new tool for the cryptanalysis of Salsa, ChaCha, and Forró designed to be used in high performance environments with several GPUs. With CryptDances it is possible to compute differential correlations, to derive new linear approximations for ChaCha automatically, to automate the computation of the complexity of PNB attacks, among other features. We make CryptDances available for the community at https://github.com/MurCoutinho/cryptDances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_28
Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of Latin dances: analysis of salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_30
Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with applications to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_12
Bernstein, D.J.: The poly1305-AES message-authentication code. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_3
Bernstein, D.J.: Chacha, a variant of salsa20. In: Workshop Record of SASC, vol. 8, pp. 3–5 (2008)
Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_8
Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited. J. Cryptol. 30(3), 859–888 (2017). https://doi.org/10.1007/s00145-016-9237-5
Hernandez-Castro, J.C.H., Tapiador, J.M.E., Quisquater, J.-J.: On the Salsa20 core function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 462–469. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_29
Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for reduced round Salsa and ChaCha. IACR Trans. Symmetric Cryptol. 2016(2), 261–287 (2016). https://doi.org/10.13154/tosc.v2016.i2.261-287
Coutinho, M., Neto, T.C.S.: New multi-bit differentials to improve attacks against ChaCha. IACR Cryptology ePrint Archive 2020/350 (2020). https://eprint.iacr.org/2020/350
Coutinho, M., Souza Neto, T.C.: Improved linear approximations to ARX ciphers and attacks against ChaCha. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 711–740. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_25
Coutinho, M., Passos, I., de Sousa Jr, R.T., Borges, F.: Improving the security of ChaCha against differential-linear cryptanalysis (2020)
Crowley, P.: Truncated differential cryptanalysis of five rounds of salsa20. IACR Cryptology ePrint Archive 2005/375 (2005). http://eprint.iacr.org/2005/375
Dey, S., Garai, H.K., Sarkar, S., Sharma, N.K.: Revamped differential-linear cryptanalysis on reduced round ChaCha. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology. LNCS, vol. 13277, pp. 86–114. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_4
Dey, S., Sarkar, S.: Improved analysis for reduced round salsa and ChaCha. Discret. Appl. Math. 227, 58–69 (2017). https://doi.org/10.1016/j.dam.2017.04.034
Ding, L.: Improved related-cipher attack on salsa20 stream cipher. IEEE Access 7, 30197–30202 (2019). https://doi.org/10.1109/ACCESS.2019.2892647
Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-randomness in eSTREAM candidates Salsa20 and TSC-4. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006). https://doi.org/10.1007/11941378_2
IANIX: ChaCha usage & deployment (2020). https://ianix.com/pub/chacha-deployment.html. Accessed 13 Jan 2020
IANIX: Salsa20 usage & deployment (2021). https://ianix.com/pub/salsa20-deployment.html. Accessed 02 Feb 2021
Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3
Langley, A., Chang, W., Mavrogiannopoulos, N., Strömbergson, J., Josefsson, S.: Chacha20-poly1305 cipher suites for transport layer security (TLS). RFC 7905, 1–8 (2016). https://doi.org/10.17487/RFC7905
Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_28
Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and salsa. Discret. Appl. Math. 208, 88–97 (2016). https://doi.org/10.1016/j.dam.2016.02.020
Maitra, S., Paul, G., Meier, W.: Salsa20 cryptanalysis: new moves and revisiting old styles. IACR Cryptology ePrint Archive 2015/217 (2015). http://eprint.iacr.org/2015/217
Mouha, N., Preneel, B.: A proof that the ARX cipher salsa20 is secure against differential cryptanalysis. IACR Cryptology ePrint Archive 2013/328 (2013). http://eprint.iacr.org/2013/328
Niu, Z., Sun, S., Liu, Y., Li, C.: Rotational differential-linear distinguishers of ARX ciphers with arbitrary output linear masks. Cryptology ePrint Archive (2022)
Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs - The eSTREAM Finalists. LNCS, vol. 4986. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3
Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5_24
Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_20
Acknowledgements
This work is supported in part by FAPDF - Brazilian Federal District Research Support Foundation, in part by CNPq - Brazilian National Research Council (Grants 312180/2019-5 PQ-2 and 465741/2014-2 INCT on Cybersecurity), in part by the Ministry of Justice and Public Security (Grant MJSP 01/2019), in part by the Administrative Council for Economic Defense (Grant CADE 08700.000047/2019-14), in part by the General Attorney of the Union (Grant AGU 697.935/2019), in part by the National Auditing Department of the Brazilian Health System (Grant DENASUS 23106.118410/2020-85), and in part by the General Attorney’s Office for the National Treasure (Grant PGFN 23106.148934/2019-67).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Coutinho, M., Passos, I., Grados Vásquez, J.C., de Mendonça, F.L.L., de Sousa, R.T., Borges, F. (2022). Latin Dances Reloaded: Improved Cryptanalysis Against Salsa and ChaCha, and the Proposal of Forró. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-22963-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22962-6
Online ISBN: 978-3-031-22963-3
eBook Packages: Computer ScienceComputer Science (R0)