[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Framework for Probabilistic Reasoning on Knowledge Graphs

  • Conference paper
  • First Online:
Building Bridges between Soft and Statistical Methodologies for Data Science (SMPS 2022)

Abstract

In this paper we introduce a framework for probabilistic reasoning on knowledge graphs. The framework leverages the notion of probabilistic knowledge graphs (PKGs), a dedicated probabilistic graphical model, as well as Soft Vadalog, a specific language for knowledge representation and reasoning on such model. We illustrate PKGs, the language and the general problem of probabilistic reasoning, providing approximate algorithmic tools to make it feasible and efficient. This work—a short version of our recent contribution to the International Joint Conference on Rules and Reasoning 2020—aims at making our results available to the broader statistical community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: Cplint on SWISH: probabilistic logical inference with a web browser. Intelligenza Artificiale 11(1), 47–64 (2017)

    Article  Google Scholar 

  • Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and knowledge graphs. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-2017), pp. 2–10 (2017)

    Google Scholar 

  • Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: Datalog-based reasoning for knowledge graphs. Proc. VLDB Endow. 11(9), 975–987 (2018)

    Article  Google Scholar 

  • Bellomarini, L., Laurenza, E., Sallinger, E., Sherkhonov, E.: Reasoning under uncertainty in knowledge graphs. In: Gutiérrez-Basulto, V., Kliegr, T., Soylu, A., Giese, M., Roman, D. (eds.) RuleML+RR 2020. LNCS, vol. 12173, pp. 131–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57977-7_9

    Chapter  MATH  Google Scholar 

  • Bellomarini, L., Sallinger, E., Vahdati, S.: Knowledge graphs: the layered perspective. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 20–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7_2

    Chapter  Google Scholar 

  • Calì, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog\(^\pm \): a family of languages for ontology querying. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 351–368. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24206-9_20

    Chapter  Google Scholar 

  • Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering problem. Artif. Intell. 193, 87–128 (2012)

    Article  MathSciNet  Google Scholar 

  • De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z

    Article  MathSciNet  MATH  Google Scholar 

  • Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015)

    Article  MathSciNet  Google Scholar 

  • Gilks, W., Richardson, S., Spiegelhalter, D. (eds.): Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Interdisciplinary Statistics, London (1995)

    Google Scholar 

  • Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI 2008), pp. 220–229. AUAI Press (2008)

    Google Scholar 

  • Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog\(^\pm \): questions and answers. In: Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 682–685 (2014)

    Google Scholar 

  • Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime: rules to the rescue. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2999–3007 (2015)

    Google Scholar 

  • Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 71 (2021). https://doi.org/10.1145/3447772

    Article  Google Scholar 

  • Jaeger, M.: Probabilistic logic and relational models. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, 2nd edn., pp. 1907–1921. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_157

    Chapter  Google Scholar 

  • Kersting, K., De Raedt, L.: Basic principles of learning Bayesian logic programs. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 189–221. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_7

    Chapter  MATH  Google Scholar 

  • Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning (KR 2016), pp. 145–154. AAAI Press (2016)

    Google Scholar 

  • Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: probabilistic models with unknown objects. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1352–1359 (2005)

    Google Scholar 

  • Pfeffer, A.: Figaro: An Object-Oriented Probabilistic Programming Language (2009). www.cs.tufts.edu/~nr/cs257/archive/avi-pfeffer/figaro.pdf

  • Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_8

    Chapter  MATH  Google Scholar 

  • Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  • Veloso, M.: Learning to select team strategies in finite-timed zero-sum games. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, p. 1. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74782-6_1

    Chapter  Google Scholar 

  • Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP 1995), pp. 715–729. MIT Press (1995)

    Google Scholar 

  • Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 1330–1339 (1997)

    Google Scholar 

  • Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data Management, Morgan & Claypool Publishers (2011)

    Google Scholar 

  • Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Benedetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellomarini, L., Benedetto, D., Laurenza, E., Sallinger, E. (2023). A Framework for Probabilistic Reasoning on Knowledge Graphs. In: García-Escudero, L.A., et al. Building Bridges between Soft and Statistical Methodologies for Data Science . SMPS 2022. Advances in Intelligent Systems and Computing, vol 1433. Springer, Cham. https://doi.org/10.1007/978-3-031-15509-3_7

Download citation

Publish with us

Policies and ethics