Abstract
In this paper we introduce a framework for probabilistic reasoning on knowledge graphs. The framework leverages the notion of probabilistic knowledge graphs (PKGs), a dedicated probabilistic graphical model, as well as Soft Vadalog, a specific language for knowledge representation and reasoning on such model. We illustrate PKGs, the language and the general problem of probabilistic reasoning, providing approximate algorithmic tools to make it feasible and efficient. This work—a short version of our recent contribution to the International Joint Conference on Rules and Reasoning 2020—aims at making our results available to the broader statistical community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: Cplint on SWISH: probabilistic logical inference with a web browser. Intelligenza Artificiale 11(1), 47–64 (2017)
Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and knowledge graphs. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-2017), pp. 2–10 (2017)
Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: Datalog-based reasoning for knowledge graphs. Proc. VLDB Endow. 11(9), 975–987 (2018)
Bellomarini, L., Laurenza, E., Sallinger, E., Sherkhonov, E.: Reasoning under uncertainty in knowledge graphs. In: Gutiérrez-Basulto, V., Kliegr, T., Soylu, A., Giese, M., Roman, D. (eds.) RuleML+RR 2020. LNCS, vol. 12173, pp. 131–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57977-7_9
Bellomarini, L., Sallinger, E., Vahdati, S.: Knowledge graphs: the layered perspective. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 20–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7_2
Calì, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog\(^\pm \): a family of languages for ontology querying. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 351–368. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24206-9_20
Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering problem. Artif. Intell. 193, 87–128 (2012)
De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z
Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015)
Gilks, W., Richardson, S., Spiegelhalter, D. (eds.): Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Interdisciplinary Statistics, London (1995)
Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI 2008), pp. 220–229. AUAI Press (2008)
Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog\(^\pm \): questions and answers. In: Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 682–685 (2014)
Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime: rules to the rescue. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2999–3007 (2015)
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 71 (2021). https://doi.org/10.1145/3447772
Jaeger, M.: Probabilistic logic and relational models. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, 2nd edn., pp. 1907–1921. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_157
Kersting, K., De Raedt, L.: Basic principles of learning Bayesian logic programs. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 189–221. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_7
Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning (KR 2016), pp. 145–154. AAAI Press (2016)
Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: probabilistic models with unknown objects. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1352–1359 (2005)
Pfeffer, A.: Figaro: An Object-Oriented Probabilistic Programming Language (2009). www.cs.tufts.edu/~nr/cs257/archive/avi-pfeffer/figaro.pdf
Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_8
Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
Veloso, M.: Learning to select team strategies in finite-timed zero-sum games. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, p. 1. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74782-6_1
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP 1995), pp. 715–729. MIT Press (1995)
Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 1330–1339 (1997)
Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data Management, Morgan & Claypool Publishers (2011)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bellomarini, L., Benedetto, D., Laurenza, E., Sallinger, E. (2023). A Framework for Probabilistic Reasoning on Knowledge Graphs. In: García-Escudero, L.A., et al. Building Bridges between Soft and Statistical Methodologies for Data Science . SMPS 2022. Advances in Intelligent Systems and Computing, vol 1433. Springer, Cham. https://doi.org/10.1007/978-3-031-15509-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-15509-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15508-6
Online ISBN: 978-3-031-15509-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)