[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Evaluation of Disclosure Risks of Text Anonymization Methods

  • Conference paper
  • First Online:
Privacy in Statistical Databases (PSD 2022)

Abstract

The standard approach to evaluate text anonymization methods consists of comparing their outcomes with the anonymization performed by human experts. The degree of privacy protection attained is then measured with the IR-based recall metric, which expresses the proportion of re-identifying terms that were correctly detected by the anonymization method. However, the use of recall to estimate the degree of privacy protection suffers from several limitations. The first is that it assigns a uniform weight to each re-identifying term, thereby ignoring the fact that some missed re-identifying terms may have a larger influence on the disclosure risk than others. Furthermore, IR-based metrics assume the existence of a single gold standard annotation. This assumption does not hold for text anonymization, where several maskings (each one encompassing a different combination of terms) could be equally valid to prevent disclosure. Finally, those metrics rely on manually anonymized datasets, which are inherently subjective and may be prone to various errors, omissions and inconsistencies. To tackle these issues, we propose an automatic re-identification attack for (anonymized) texts that provides a realistic assessment of disclosure risks. Our method follows a similar premise as the well-known record linkage methods employed to evaluate anonymized structured data, and leverages state-of-the-art deep learning language models to exploit the background knowledge available to potential attackers. We also report empirical evaluations of several well-known methods and tools for text anonymization. Results show significant re-identification risks for all methods, including also manual anonymization efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/microsoft/presidio.

  2. 2.

    https://spacy.io/api/entityrecognizer.

  3. 3.

    https://huggingface.co/docs/transformers/index.

References

  1. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data and Repealing Directive 95/46/EC. In: Commission, E. (ed.) (2016)

    Google Scholar 

  2. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2007)

    Google Scholar 

  3. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Disc. Data (TKDD) 1, 3-es (2007)

    Google Scholar 

  4. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzz. Knowl. Based Syst. 10, 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  5. Dwork, C.: Differential privacy. In: International Colloquium on Automata, Languages, and Programming, pp. 1–12. Springer (2006)

    Google Scholar 

  6. Lison, P., Pilán, I., Sánchez, D., Batet, M., Øvrelid, L.: Anonymisation models for text data: state of the art, challenges and future directions. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, vol. 1, Long Papers, pp. 4188–4203 (2021)

    Google Scholar 

  7. Csányi, G.M., Nagy, D., Vági, R., Vadász, J.P., Orosz, T.: Challenges and open problems of legal document anonymization. Symmetry 13, 1490 (2021)

    Article  Google Scholar 

  8. Aberdeen, J., et al.: The MITRE identification scrubber toolkit: design, training, and assessment. Int. J. Med. Informatics 79, 849–859 (2010)

    Article  Google Scholar 

  9. Chen, A., Jonnagaddala, J., Nekkantti, C., Liaw, S.-T.: Generation of surrogates for de-identification of electronic health records. In: MEDINFO 2019: Health and Wellbeing e-Networks for All, pp. 70–73. IOS Press (2019)

    Google Scholar 

  10. Dernoncourt, F., Lee, J.Y., Uzuner, O., Szolovits, P.: De-identification of patient notes with recurrent neural networks. J. Am. Med. Inform. Assoc. 24, 596–606 (2017)

    Article  Google Scholar 

  11. Johnson, A.E., Bulgarelli, L., Pollard, T.J.: Deidentification of free-text medical records using pre-trained bidirectional transformers. In: Proceedings of the ACM Conference on Health, Inference, and Learning, pp. 214–221 (2020)

    Google Scholar 

  12. Liu, Z., Tang, B., Wang, X., Chen, Q.: De-identification of clinical notes via recurrent neural network and conditional random field. J. Biomed. Inform. 75, S34–S42 (2017)

    Article  Google Scholar 

  13. Mamede, N., Baptista, J., Dias, F.: Automated anonymization of text documents. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1287–1294. IEEE (2016)

    Google Scholar 

  14. Meystre, S.M., Friedlin, F.J., South, B.R., Shen, S., Samore, M.H.: Automatic de-identification of textual documents in the electronic health record: a review of recent research. BMC Med. Res. Methodol. 10, 1–16 (2010)

    Article  Google Scholar 

  15. Neamatullah, I., et al.: Automated de-identification of free-text medical records. BMC Med. Inform. Decis. Mak. 8, 1–17 (2008)

    Article  Google Scholar 

  16. Reddy, S., Knight, K.: Obfuscating gender in social media writing. In: Proceedings of the First Workshop on NLP and Computational Social Science, pp. 17–26 (2016)

    Google Scholar 

  17. Sweeney, L.: Replacing personally-identifying information in medical records, the Scrub system. In: Proceedings of the AMIA Annual Fall Symposium, p. 333. American Medical Informatics Association (1996)

    Google Scholar 

  18. Szarvas, G., Farkas, R., Busa-Fekete, R.: State-of-the-art anonymization of medical records using an iterative machine learning framework. J. Am. Med. Inform. Assoc. 14, 574–580 (2007)

    Article  Google Scholar 

  19. Xu, Q., Qu, L., Xu, C., Cui, R.: Privacy-aware text rewriting. In: Proceedings of the 12th International Conference on Natural Language Generation, pp. 247–257 (2019)

    Google Scholar 

  20. Yang, H., Garibaldi, J.M.: Automatic detection of protected health information from clinic narratives. J. Biomed. Inform. 58, S30–S38 (2015)

    Article  Google Scholar 

  21. Sánchez, D., Batet, M.: C-sanitized: a privacy model for document redaction and sanitization. J. Am. Soc. Inf. Sci. 67, 148–163 (2016)

    Google Scholar 

  22. Mosallanezhad, A., Beigi, G., Liu, H.: Deep reinforcement learning-based text anonymization against private-attribute inference. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2360–2369 (2019)

    Google Scholar 

  23. Chakaravarthy, V.T., Gupta, H., Roy, P., Mohania, M.K.: Efficient techniques for document sanitization. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 843–852 (2008)

    Google Scholar 

  24. Fernandes, N., Dras, M., McIver, A.: Generalised differential privacy for text document processing. In: Nielson, F., Sands, D. (eds.) Principles of Security and Trust. LNCS, vol. 11426, pp. 123–148. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17138-4_6

    Chapter  Google Scholar 

  25. Cumby, C., Ghani, R.: A machine learning based system for semi-automatically redacting documents. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1628–1635 (2011)

    Google Scholar 

  26. Anandan, B., Clifton, C., Jiang, W., Murugesan, M., Pastrana-Camacho, P., Si, L.: t-Plausibility: generalizing words to desensitize text. Trans. Data Priv. 5, 505–534 (2012)

    MathSciNet  Google Scholar 

  27. Hassan, F., Sanchez, D., Domingo-Ferrer, J.: Utility-preserving privacy protection of textual documents via word embeddings. IEEE Trans. Knowl. Data Eng. 1 (2021)

    Google Scholar 

  28. Hundepool, A., et al.: Statistical Disclosure Control. Wiley, New York (2012)

    Book  Google Scholar 

  29. Pilán, I., Lison, P., Øvrelid, L., Papadopoulou, A., Sánchez, D., Batet, M.: The Text Anonymization Benchmark (TAB): A Dedicated Corpus and Evaluation Framework for Text Anonymization. arXiv preprint arXiv:2202.00443 (2022)

  30. Domingo-Ferrer, J., Torra, V.J.S.: Computing: disclosure risk assessment in statistical microdata protection via advanced record linkage. Statist. Comput. 13, 343–354 (2003)

    Google Scholar 

  31. Nin Guerrero, J., Herranz Sotoca, J., Torra i Reventós, V.: On method-specific record linkage for risk assessment. In: Proceedings of the Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, pp. 1–12 (2007)

    Google Scholar 

  32. Torra, V., Abowd, J.M., Domingo-Ferrer, J.: Using Mahalanobis distance-based record linkage for disclosure risk assessment. In: DomingoFerrer, J., Franconi, L. (eds.) Privacy in Statistical Databases. LNCS, vol. 4302, pp. 233–242. Springer, Heidelberg (2006). https://doi.org/10.1007/11930242_20

    Chapter  Google Scholar 

  33. Torra, V., Stokes, K.J.I.J.o.U., Fuzziness, Systems, K.-B.: A formalization of record linkage and its application to data protection. Int. J. Uncert. Fuzz. Knowl. Based Syst. 20, 907–919 (2012)

    Google Scholar 

  34. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  35. Mozes, M., Kleinberg, B.J.: No Intruder, no Validity: Evaluation Criteria for Privacy-Preserving Text Anonymization (2021)

    Google Scholar 

  36. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  37. Liu, Y., Liu, Z., Chua, T.-S., Sun, M.: Topical word embeddings. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  38. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  39. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  40. El-Kassas, W.S., Salama, C.R., Rafea, A.A., Mohamed, H.K.: Automatic text summarization: a comprehensive survey. Expert Syst. Appl. 165, 113679 (2021)

    Article  Google Scholar 

  41. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  42. Sánchez, D., Batet, M.: Toward sensitive document release with privacy guarantees. Eng. Appl. Artif. Intell. 59, 23–34 (2017)

    Article  Google Scholar 

  43. Staddon, J., Golle, P., Zimny, B.: Web-based inference detection. In: USENIX Security Symposium (2007)

    Google Scholar 

Download references

Acknowledgements

Partial support to this work has been received from the Norwegian Research Council (CLEANUP project, grant nr. 308904), the European Commission (projects H2020-871042 “SoBigData++” and H2020-101006879 “MobiDataLab”) and the Government of Catalonia (ICREA Acadèmia Prize to D. Sánchez). The opinions in this paper are the authors’ own and do not commit UNESCO or any of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manzanares-Salor, B., Sánchez, D., Lison, P. (2022). Automatic Evaluation of Disclosure Risks of Text Anonymization Methods. In: Domingo-Ferrer, J., Laurent, M. (eds) Privacy in Statistical Databases. PSD 2022. Lecture Notes in Computer Science, vol 13463. Springer, Cham. https://doi.org/10.1007/978-3-031-13945-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13945-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13944-4

  • Online ISBN: 978-3-031-13945-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics