Abstract
The development of user-centered designed products offers great benefits for the user by increasing the perceived usability of the product. To achieve this, the interactions within the human–machine system must be comprehensively understood, which is currently often time-consuming, costly, and inefficient for product development. The user-centered design approach is therefore still rarely applied. This article presents a structured approach for developing user-centered products by optimizing perceived usability. The article is divided into the presentation of a thought model for the designer and a process for the application of the model. The Usability Study Evaluation Model (USE-Model) aims to identify relevant product properties that can improve the user’s perception. It thus helps to gain an understanding of the complex interaction between the user, the technical system, and the environment. The Usability Study Evaluation Process (USE-Process) presents a guideline for using the model within a development process. The process is divided into three steps: identification, evaluation, and quantification. The steps provide the designer with specific courses of action, starting with analysis in field studies and ending with testing and measurement of influencing factors in laboratory tests. The USE-Model and the USE-Process are intended to improve the development of user-centered designed products.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fraser TM (1980) Ergonomic principles in the design of hand tools. Occupational safety and health series, vol 44, Geneva
Kuijt-Evers LFM, Vink P, de Looze MP (2007) Comfort predictors for different kinds of hand tools: differences and similarities. Int J Ind Ergon 37:73–84. https://doi.org/10.1016/j.ergon.2006.09.019
Päivinen M, Heinimaa T (2009) The usability and ergonomics of axes. Appl Ergon 40:790–796. https://doi.org/10.1016/j.apergo.2008.08.002
Cooper RG, Kleinschmidt EJ (1987) Success factors in product innovation. Ind Mark Manage 16:215–223. https://doi.org/10.1016/0019-8501(87)90029-0
Hutchison D, Kanade T, Kittler J et al. (2013) Design, user experience, and usability. Web, Mobile, and Product Design, vol 8015. Springer, Berlin
Mao J-Y, Vredenburg K, Smith PW et al (2005) The state of user-centered design practice. Commun ACM 48:105–109. https://doi.org/10.1145/1047671.1047677
Llinares C, Page AF (2011) Kano’s model in Kansei Engineering to evaluate subjective real estate consumer preferences. Int J Ind Ergon 41:233–246. https://doi.org/10.1016/j.ergon.2011.01.011
Kuijt-Evers LFM, Groenesteijn L, de Looze MP et al (2004) Identifying factors of comfort in using hand tools. Appl Ergon 35:453–458. https://doi.org/10.1016/j.apergo.2004.04.001
ISO 9241-210:2019 Ergonomics of human-system interaction—Part 210: Human-centred design for interactive systems
Dianat I, Rahimi S, Nedaei M et al (2017) Effects of tool handle dimension and workpiece orientation and size on wrist ulnar/radial torque strength, usability and discomfort in a wrench task. Appl Ergon 59:422–430. https://doi.org/10.1016/j.apergo.2016.10.004
Hassenzahl M (2010) Experience design: technology for all the right reasons. Synth Lect Hum-Centered Inf 3:1–95. https://doi.org/10.2200/S00261ED1V01Y201003HCI008
Aptel M, Claudon L, Marsot J (2002) Integration of ergonomics into hand tool design: principle and presentation of an example. Int J Occup Saf Ergon 8:107–115. https://doi.org/10.1080/10803548.2002.11076518
Khalid HM, Helander MG (2006) Customer emotional needs in product design. Concurr Eng 14:197–206. https://doi.org/10.1177/1063293X06068387
Germann R, Jahnke B, Matthiesen S (2019) Objective usability evaluation of drywall screwdriver under consideration of the user experience. Appl Ergon 75:170–177. https://doi.org/10.1016/j.apergo.2018.10.001
Germann R, Kurth L, Matthiesen S (2018) Usability testing—objective evaluation of the application quality of power tools under consideration of the brand influence. Manuskript eingereicht zur Publikation. https://doi.org/10.5445/IR/1000082412
Adler M, Hermann H-J, Koldehoff M et al. (2010) Ergonomiekompendium: Anwendung ergonomischer Regeln und Prüfung der Gebrauchstauglichkeit von Produkten (Ergonomics compendium: application of ergonomic rules and testing of the usability of products), 1. Aufl. BAuA, Dortmund
Matthiesen S, Germann R, Schmidt S et al. (2016) Prozessmodell zur anwendungsorientierten Entwicklung von power-tools (Process model for application-oriented design of power tools). In: Weidner R (ed) Technische Unterstützungssysteme, die die Menschen wirklich wollen, Hamburg, pp 223–232
Matthiesen S, Germann R (2018) Meaningful prediction parameters for evaluating the suitability of power tools for usage. Procedia CIRP 70:241–246. https://doi.org/10.1016/j.procir.2018.02.040
Dumas JS, Redish JC (1999) A practical guide to usability testing. Rev. edn. Intellect, Exeter
Vink P, Miedema M, Koningsveld E et al (2002) Physical effects of new devices for bricklayers. Int J Occup Saf Ergon 8:71–82. https://doi.org/10.1080/10803548.2002.11076515
Karen H, Sandra J (2017) Contextual inquiry: a participatory technique for system design. In: Participatory design. CRC Press, pp 177–210
van Someren MW, Barnard YF, Sandberg JAC (1994) The think aloud method: a practical guide to modelling cognitive processes. In: Knowledge-based systems. Academic, London, UK
Charness G, Gneezy U, Kuhn MA (2012) Experimental methods: between-subject and within-subject design. J Econ Behav Organ 81:1–8. https://doi.org/10.1016/j.jebo.2011.08.009
Karapanos E, Zimmerman J, Forlizzi J et al. (2009) User experience over time: an initial framework. In: Olsen DR, Arthur RB, Hinckley K et al. (eds) Proceedings of the 27th international conference on human factors in computing systems—CHI 09. ACM Press, New York, USA, p 729
Malinowska-Borowska J, Zieliński G (2013) Coupling forces exerted on chain saws by inexperienced tree fellers. Int J Ind Ergon 43:283–287. https://doi.org/10.1016/j.ergon.2013.04.006
Matthiesen S, Gwosch T, Schäfer T et al. (2016) Experimentelle Ermittlung von Bauteilbelastungen eines Power Tool Antriebsstrangs durch indirektes Messen in realitätsnahen Anwendungen als ein Baustein in der Teilsystemvalidierung (Experimental determination of component loads of a power tool powertrain by indirect measurement in realistic applications as a building block in subsystem validation). Forschung im Ingenieurwesen Originalarbeiten
Matthiesen S, Dörr M, Zimprich S (2018) Testfallgenerierung—Vorgehen zur Lastkollektivermittlung durch Data Mining am Winkelschleifer (Test case creation—procedure for load spectrum determination by data mining on angle grinder): 29. In: Dieter Krause KP (ed) DfX-Symposium 2018, vol 29
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Germann, R., Helmstetter, S., Fotler, D., Matthiesen, S. (2023). Perceived Usability in User-Centered Design: Analysis of Usability Aspects for Improving Human-Machine Systems. In: Duffy, V.G., Lehto, M., Yih, Y., Proctor, R.W. (eds) Human-Automation Interaction. Automation, Collaboration, & E-Services, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-031-10780-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-10780-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10779-5
Online ISBN: 978-3-031-10780-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)