[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Selection Methods for Uplift Modeling and Heterogeneous Treatment Effect

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 647))

  • 1317 Accesses

Abstract

Uplift modeling is a causal learning technique that estimates subgroup-level treatment effects. It is commonly used in industry and elsewhere for tasks such as targeting ads. In a typical setting, uplift models can take thousands of features as inputs, which is costly and results in problems such as overfitting and poor model interpretability. Consequently, there is a need to select a subset of the most important features for modeling. However, traditional methods for doing feature selection are not fit for the task because they are designed for standard machine learning models whose target is importantly different from uplift models. To address this, this paper introduces a set of feature selection methods explicitly designed for uplift modeling, drawing inspiration from statistics and information theory. Empirical evaluations are conducted on the proposed methods on publicly available datasets, demonstrating the advantages of the proposed methods compared to traditional feature selection. We make the proposed methods publicly available as a part of the CausalML open-source package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Megafon Uplift Competition (2021). https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data

  2. Athey, S., Imbens, G.: Recursive partitioning for heterogeneous causal effects, April 2015

    Google Scholar 

  3. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests, October 2016

    Google Scholar 

  4. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34(3), 483–519 (2013)

    Article  Google Scholar 

  5. Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143, 106839 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  7. Chen, H., Harinen, T., Lee, J.Y., Yung, M., Zhao, Z.: CausalML: Python package for causal machine learning. arXiv preprint arXiv:2002.11631 (2020)

  8. Chen, X., et al.: Imbalance-aware uplift modeling for observational data (2022)

    Google Scholar 

  9. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8609–8613. IEEE (2013)

    Google Scholar 

  10. Grimmer, J., Messing, S., Westwood, S.J.: Estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods. Polit. Anal. 25(4), 413–434 (2017)

    Article  Google Scholar 

  11. Guelman, L., Guillén, M., Pérez-Marín, A.M.: Random forests for uplift modeling: an insurance customer retention case. In: Engemann, K.J., Gil-Lafuente, A.M., Merigó, J.M. (eds.) MS 2012. LNBIP, vol. 115, pp. 123–133. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30433-0_13

    Chapter  Google Scholar 

  12. Guelman, L., Guillén, M., Pérez-Marín, A.M.: Uplift random forests. Cybern. Syst. 46(3–4), 230–248 (2015)

    Article  Google Scholar 

  13. Gutierrez, P., Gerardy, J.Y.: Causal inference and uplift modeling a review of the literature. In: JMLR: Workshop and Conference Proceedings, vol. 67 (2016)

    Google Scholar 

  14. Hansotia, B., Rukstales, B.: Incremental value modeling. Res. Council J. 16, 35–46 (2001)

    Google Scholar 

  15. Holland, P.W.: Statistics and causal inference. J. Am. Stat. Assoc. 81(396), 945–960 (1986)

    Article  MathSciNet  Google Scholar 

  16. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  17. Kohavi, R., Tang, D., Xu, Y.: Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  18. Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Meta-learners for estimating heterogeneous treatment effects using machine learning, June 2017

    Google Scholar 

  19. Larsen, K.: Data exploration with weight of evidence and information value in R (2015)

    Google Scholar 

  20. Lo, V.S.: The true lift model: a novel data mining approach to response modeling in database marketing. ACM SIGKDD Explor. Newsl. 4(2), 78–86 (2002)

    Article  Google Scholar 

  21. Mouloud, B., Olivier, G., Ghaith, K.: Adapting neural networks for uplift models. arXiv preprint arXiv:2011.00041 (2020)

  22. Neyman, J.: Sur les applications de la théorie des probabilités aux experiences agricoles: Essai des principes. Roczniki Nauk Rolniczych 10, 1–51 (1923)

    Google Scholar 

  23. Nie, X., Wager, S.: Quasi-Oracle estimation of heterogeneous treatment effects, December 2017

    Google Scholar 

  24. Olaya, D., Coussement, K., Verbeke, W.: A survey and benchmarking study of multitreatment uplift modeling. Data Mining Knowl. Discov. 34(2), 273–308 (2020). https://doi.org/10.1007/s10618-019-00670-y

    Article  MathSciNet  Google Scholar 

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Radcliffe, N.J., Surry, P.D.: Real-world uplift modelling with significance-based uplift trees. In: White Paper TR-2011-1, Stochastic Solutions, pp. 1–33 (2011)

    Google Scholar 

  27. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66(5), 688–701 (1974)

    Article  Google Scholar 

  28. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100(469), 322–331 (2005)

    Article  MathSciNet  Google Scholar 

  29. Rzepakowski, P., Jaroszewicz, S.: Decision trees for uplift modeling with single and multiple treatments. Knowl. Inf. Syst. 32(2), 303–327 (2012)

    Article  Google Scholar 

  30. Shortreed, S.M., Ertefaie, A.: Outcome-adaptive lasso: variable selection for causal inference. Biometrics 73(4), 1111–1122 (2017)

    Article  MathSciNet  Google Scholar 

  31. Sołtys, M., Jaroszewicz, S., Rzepakowski, P.: Ensemble methods for uplift modeling. Data Mining Knowl. Discov. 29(6), 1531–1559 (2014). https://doi.org/10.1007/s10618-014-0383-9

    Article  MathSciNet  Google Scholar 

  32. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. Data Classif. Algorithms Appl. 37 (2014)

    Google Scholar 

  33. Teinemaa, I., Albert, J., Goldenberg, D.: Uplift modeling: from causal inference to personalization (2021)

    Google Scholar 

  34. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests, October 2015

    Google Scholar 

  35. Zaniewicz, L., Jaroszewicz, S.: Support vector machines for uplift modeling. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 131–138, December 2013

    Google Scholar 

  36. Zhao, Y., Fang, X., Simchi-Levi, D.: Uplift modeling with multiple treatments and general response types, May 2017

    Google Scholar 

  37. Zhao, Z.: Synthetic data for uplift modeling and heterogenous treatment effect with known counterfactuals and ITE, March 2022. https://doi.org/10.5281/zenodo.6342553

  38. Zhao, Z., Harinen, T.: Uplift modeling for multiple treatments with cost optimization. arXiv preprint arXiv:1908.05372 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Zhao or Totte Harinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Zhang, Y., Harinen, T., Yung, M. (2022). Feature Selection Methods for Uplift Modeling and Heterogeneous Treatment Effect. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-08337-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08337-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08336-5

  • Online ISBN: 978-3-031-08337-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics