Abstract
Neural radiance field (NeRF) is a technique for synthesizing novel-view images based on an understanding of scene geometry. Recently, there have been studies that remove objects from NeRF, which makes it possible to synthesize novel-view images with objects removed. Most existing methods apply a pretrained inpainting model to each multi-view image to remove objects, and use these images to train the NeRF model. However, these approaches not only require a lot of feedforward of the inpainting model, but also lead to inconsistency problems between the inpainted images. To address these limitations, we propose a method to minimize the areas that need to be filled. To this end, we estimate never-seen regions that are occluded in all images based on density, and apply inpainting only to those regions. After removing target objects, we select the images that allow the final trained NeRF to consistently fill in the removed regions. Therefore, the proposed method consistently removes target objects from NeRF, and the effectiveness of the proposed method is demonstrated through various experiments. Furthermore, we suggest practical techniques to simplify the training processes and provide a new 360\(^{\circ }\) real-world dataset for inpainting in NeRF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In: ICCV. pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In: CVPR. pp. 5470–5479 (2022)
Cao, C., Fu, Y.: Learning a sketch tensor space for image inpainting of man-made scenes. In: ICCV. pp. 14509–14518 (2021)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In: ECCV. pp. 333–350 (2022)
Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422 (2018)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance fields without neural networks. In: CVPR. pp. 5501–5510 (2022)
Goel, R., Sirikonda, D., Saini, S., Narayanan, P.: Interactive segmentation of radiance fields. In: CVPR. pp. 4201–4211 (2023)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. NIPS (2017)
Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: ICPR. pp. 2366–2369 (2010)
Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via feature field distillation. NeurIPS pp. 23311–23330 (2022)
Li, F., Ricardez, G.A.G., Takamatsu, J., Ogasawara, T.: Multi-view inpainting for rgb-d sequence. In: 2018 International Conference on 3D Vision (3DV). pp. 464–473 (2018)
Li, H., Luo, W., Huang, J.: Localization of diffusion-based inpainting in digital images. IEEE transactions on information forensics and security pp. 3050–3064 (2017)
Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: ECCV. pp. 85–100 (2018)
Liu, H.K., Shen, I., Chen, B.Y., et al.: Nerf-in: Free-form nerf inpainting with rgb-d priors. arXiv preprint arXiv:2206.04901 (2022)
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: Inpainting using denoising diffusion probabilistic models. In: CVPR. pp. 11461–11471 (2022)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM pp. 99–106 (2021)
Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K.G., Kelly, J., Brubaker, M.A., Gilitschenski, I., Levinshtein, A.: Spin-nerf: Multiview segmentation and perceptual inpainting with neural radiance fields. In: CVPR. pp. 20669–20679 (2023)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM TOG pp. 1–15 (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR. pp. 10684–10695 (2022)
Ružić, T., Pižurica, A.: Context-aware patch-based image inpainting using markov random field modeling. IEEE (2014)
Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., Zhang, Y.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: CVPR. pp. 3667–3676 (2020)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In: CVPR. pp. 5459–5469 (2022)
Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask inpainting with fourier convolutions. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. pp. 2149–2159 (2022)
Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields: 3d distillation of self-supervised 2d image representations. In: 2022 International Conference on 3D Vision (3DV). pp. 443–453 (2022)
Tschernezki, V., Larlus, D., Vedaldi, A.: Neuraldiff: Segmenting 3d objects that move in egocentric videos. In: 2021 International Conference on 3D Vision (3DV). pp. 910–919 (2021)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-nerf: Structured view-dependent appearance for neural radiance fields. In: CVPR. pp. 5481–5490 (2022)
Wang, Y., Wu, W., Xu, D.: Learning unified decompositional and compositional nerf for editable novel view synthesis. In: ICCV. pp. 18247–18256 (2023)
Weder, S., Garcia-Hernando, G., Monszpart, A., Pollefeys, M., Brostow, G.J., Firman, M., Vicente, S.: Removing objects from neural radiance fields. In: CVPR. pp. 16528–16538 (2023)
Yang, B., Zhang, Y., Xu, Y., Li, Y., Zhou, H., Bao, H., Zhang, G., Cui, Z.: Learning object-compositional neural radiance field for editable scene rendering. In: ICCV. pp. 13779–13788 (2021)
Yin, Y., Fu, Z., Yang, F., Lin, G.: Or-nerf: Object removing from 3d scenes guided by multiview segmentation with neural radiance fields. arXiv preprint arXiv:2305.10503 (2023)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV (2019)
Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)
Zhang, K., Fu, J., Liu, D.: Flow-guided transformer for video inpainting. In: ECCV. pp. 74–90 (2022)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR. pp. 586–595 (2018)
Zhou, S., Li, C., Chan, K.C., Loy, C.C.: Propainter: Improving propagation and transformer for video inpainting. In: ICCV. pp. 10477–10486 (2023)
Zhu, H., Li, L., Wu, J., Dong, W., Shi, G.: Metaiqa: Deep meta-learning for no-reference image quality assessment. In: CVPR. pp. 14143–14152 (2020)
Zhu, M., He, D., Li, X., Li, C., Li, F., Liu, X., Ding, E., Zhang, Z.: Image inpainting by end-to-end cascaded refinement with mask awareness. IEEE Trans. Image Process. 30, 4855–4866 (2021)
Zhu, X., Qian, Y., Zhao, X., Sun, B., Sun, Y.: A deep learning approach to patch-based image inpainting forensics. Signal Processing: Image Communication pp. 90–99 (2018)
Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (2022-0-00022, RS-2022-II220022, Development of immersive video spatial computing technology for ultra-realistic metaverse services).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 39571 KB)
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, Y., Ryu, J., Yoon, D., Cho, D. (2025). Consistent Object Removal from Masked Neural Radiance Fields by Estimating Never-Seen Regions in All-Views. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-78312-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78311-1
Online ISBN: 978-3-031-78312-8
eBook Packages: Computer ScienceComputer Science (R0)