[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Speeding up the Multi-objective NAS Through Incremental Learning

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2024)

Abstract

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have garnered significant attention in recent years for addressing a wide range of challenges in image processing and computer vision. Neural architecture search (NAS) has emerged as a crucial field aiming to automate the design and configuration of CNN models. In this paper, we propose a novel strategy to speed up the performance estimation of neural architectures by gradually increasing the size of the training set used for evaluation as the search progresses. We evaluate this approach using the CGP-NASV2 model, a multi-objective NAS method, on the CIFAR-100 dataset. Experimental results demonstrate a notable acceleration in the search process, achieving a speedup of 4.6 times compared to the baseline. Despite using limited data in the early stages, our proposed method effectively guides the search towards competitive architectures. This study highlights the efficacy of leveraging lower-fidelity estimates in NAS and paves the way for further research into accelerating the design of efficient CNN architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Technical report 2 (2002)

    Google Scholar 

  2. Elsken, T., Metzen, J.H., Hutter, F.: Neural Architecture Search: A Survey. Technical report (2019). http://jmlr.org/papers/v20/18-598.html

  3. Garcia-Garcia, C., Escalante, H.J., Morales-Reyes, A.: CGP-NAS. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, vol. 1, pp. 643–646. ACM, New York, NY, USA (2022). https://doi.org/10.1145/3520304.3528963

  4. Garcia-Garcia, C., Morales-Reyes, A., Escalante, H.J.: Continuous cartesian genetic programming based representation for multi-objective neural architecture search. Appl. Soft Comput. 147, 110788 (2023). https://doi.org/10.1016/j.asoc.2023.110788

  5. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  8. Kolbk, M., Tan, Z.H., Jensen, J., Kolbk, M., Tan, Z.H., Jensen, J.: Speech intelligibility potential of general and specialized deep neural network based speech enhancement systems. IEEE/ACM Trans. Audio Speech Lang. Proc. 25(1), 153–167 (2017). https://doi.org/10.1109/TASLP.2016.2628641

  9. Liu, Q., Wang, X., Wang, Y., Song, X.: Evolutionary convolutional neural network for image classification based on multi-objective genetic programming with leader-follower mechanism. Complex Intell. Syst.(2022)

    Google Scholar 

  10. Liu, S., Zhang, H., Jin, Y.: A survey on computationally efficient neural architecture search. J. Autom. Intell. 1(1), 100002 (2022). https://doi.org/10.1016/j.jai.2022.100002

    Article  Google Scholar 

  11. Lu, Z., Deb, K., Goodman, E., Banzhaf, W., Boddeti, V.N.: NSGANetV2: evolutionary multi-objective surrogate-assisted neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 35–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_3

    Chapter  Google Scholar 

  12. Lu, Z., et al.: NSGA-Net. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427. ACM, New York, NY, USA (2019)

    Google Scholar 

  13. Lu, Z., et al.: Multi-objective evolutionary design of deep convolutional neural networks for image classification. IEEE Trans. Evol. Comput., 1 (2020). https://doi.org/10.1109/TEVC.2020.3024708

  14. Martinez, A.D., et al.: Lights and shadows in evolutionary deep learning: taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges. Inf. Fusion 67, 161–194 (2021). https://doi.org/10.1016/j.inffus.2020.10.014

  15. Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier (2019)

    Google Scholar 

  16. Miller, J., Thomson, P., Fogarty, T., Ntroduction, I.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: a case study. Genet. Algorithms Evol. Strat. Eng. Comput. Sci. (1999)

    Google Scholar 

  17. Pinos, M., Mrazek, V., Sekanina, L.: Evolutionary approximation and neural architecture search. Genet. Programm. Evolvable Mach. (2022)

    Google Scholar 

  18. Real, E., et al.: Large-Scale Evolution of Image Classifiers (2017). http://arxiv.org/abs/1703.01041

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep convolutional neural networks using cartesian genetic programming (2020)

    Google Scholar 

  21. Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor. IEEE Trans. Evol. Comput. 24(2), 350–364 (2020). https://doi.org/10.1109/TEVC.2019.2924461

  22. Termritthikun, C., Jamtsho, Y., Ieamsaard, J., Muneesawang, P., Lee, I.: EEEA-Net: an early exit evolutionary neural architecture search. Eng. Appl. Artif. Intell. 104, 104397 (2021). https://doi.org/10.1016/j.engappai.2021.104397

  23. Torabi, A., Sharifi, A., Teshnehlab, M.: Using cartesian genetic programming approach with new crossover technique to design convolutional neural networks. Neural Process. Lett. (2022). https://doi.org/10.1007/s11063-022-11093-0

    Article  Google Scholar 

  24. Xie, L., Yuille, A.: Genetic CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1388–1397. IEEE (2017)

    Google Scholar 

  25. Xue, Y., Jiang, P., Neri, F., Liang, J.: A Multi-objective evolutionary approach based on graph-in-graph for neural architecture search of convolutional neural networks. Int. J. Neural Syst. 31(9) (2021)

    Google Scholar 

  26. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing [review article]. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018). https://doi.org/10.1109/MCI.2018.2840738

    Article  Google Scholar 

  27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Google Scholar 

Download references

Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosijopii Garcia-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia-Garcia, C., Derbel, B., Morales-Reyes, A., Escalante, H.J. (2025). Speeding up the Multi-objective NAS Through Incremental Learning. In: Martínez-Villaseñor, L., Ochoa-Ruiz, G. (eds) Advances in Soft Computing. MICAI 2024. Lecture Notes in Computer Science(), vol 15247. Springer, Cham. https://doi.org/10.1007/978-3-031-75543-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75543-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75542-2

  • Online ISBN: 978-3-031-75543-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics