Abstract
One of the main problems encountered in the analysis of real-world time series, is the existence of outliers originating from various sources other than the dynamics of the series. Such sources can be a momentary noise or an imperfection in the recording devices. This problem has led to the need to construct robust methods using metrics other than the usual mean squared error. In combination with non-parametric techniques such as the very popular Singular Value Decomposition (SSA), it can give iterative algorithms that deal with this problem but create huge needs in computing power, especially in problems where we need fast response of the system (for example in high frequency trading). In this paper, a technique addressing both problems is presented which exploits the peculiarity of the Singular Value Decomposition (SVD) analysis of square symmetric matrices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexandros, N.K., Sakas, D.P., Vlachos, D.S., Dimitrios, N.K.: Comparing scrum and xp agile methodologies using dynamic simulation modeling. In: Strategic Innovative Marketing: 5th IC-SIM, Athens, Greece 2016, pp. 391–397. Springer International Publishing (2017)
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G.: Persistent solar influence on north Atlantic climate during the Holocene. Science 294(5549), 2130–2136 (2001)
Croux, C., Filzmoser, P., Rosario Oliveira, M.: Algorithms for projection–pursuit robust principal component analysis. Chem. Intell. Laboratory Syst. 87(2), 218–225 (2007)
Croux, Christophe, Ruiz-Gazen, Anne: High breakdown estimators for principal components: the projection-pursuit approach revisited. J. Multivariate Anal. 95(1), 206–226 (2005)
Dimitrios, N.K., Sakas, D.P., Vlachos, D.S.: The contribution of dynamic simulation model of depiction of knowledge, in the leading process of high technology companies. Key Engineering Mater. 543, 406–409 (2013)
Dimitrios, N.K., Sakas, D.P., Vlachos, D.S.: Modeling publications in academic conferences. Procedia-Soc. Behav. Sci. 147, 467–477 (2014)
Filzmoser, Peter, Todorov, Valentin: Robust tools for the imperfect world. Inf. Sci. 245, 4–20 (2013)
Golyandina, N., Nekrutkin V., Zhigljavsky, A.A.: Analysis of time series structure: SSA and related techniques. CRC Press (2001)
Hassani, Hossein, Thomakos, Dimitrios: A review on singular spectrum analysis for economic and financial time series. Stat. Interface 3(3), 377–397 (2010)
Hawkins, D., Liu, L., Stanley Young, S.: Robust singular value decomposition technical report number 122 (2001). National Institute of Statistical Sciences 19 (2002)
Hubert, M., Rousseeuw, P.J., Branden, K.V.: Robpca: a new approach to robust principal component analysis. Technometrics 47(1), 64–79 (2005)
Kosmas, O.T., Vlachos, D.S.: Phase-fitted discrete lagrangian integrators. Comput. Phys. Commun. 181(3), 562–568 (2010)
Kosmas, O.T., Vlachos, D.S.: Local path fitting: a new approach to variational integrators. J. Comput. Appl. Math. 236(10), 2632–2642 (2012)
Mahmoudvand, R., Konstantinides, D., Rodrigues, P.C.: Forecasting mortality rate by multivariate singular spectrum analysis. Appl. Stoch. Models Bus. Ind. 33(6), 717–732 (2017)
Muruganatham, B., Sanjith, M.A., Krishnakumar, B., Murty, S.S.: Roller element bearing fault diagnosis using singular spectrum analysis. Mech. Syst. Signal Process. 35(1-2), 150–166 (2013)
Nasiopoulos, D.K., Sakas, D.P., Vlachos, D.S., Mavrogianni, A.: Modeling of market segmentation for new it product development. In: AIP Conference Proceedings, vol. 1644, pp. 51–59. American Institute of Physics (2015)
Nasiopoulos, D.K., Sakas, D.P., Vlachos, D.S., Mavrogianni, A.: Simulation of generation of new ideas for new product development and it services. In: AIP Conference Proceedings, vol. 1644, pp. 60–68. American Institute of Physics (2015)
Rodrigues, P.C., De Carvalho, M.: Spectral modeling of time series with missing data. Appl. Math. Model. 37(7), 4676–4684 (2013)
Paulo Canas Rodrigues and Rahim Mahmoudvand: Correlation analysis in contaminated data by singular spectrum analysis. Quality Reliab. Eng. Int. 32(6), 2127–2137 (2016)
Sakas, D.P., Vlachos, D.S., Nasiopoulos, D.K.: Modeling the development of the online conference’s services. Library Rev. 65(3), 160–184 (2016)
Salgado, D.R., Alonso, F.J.: Tool wear detection in turning operations using singular spectrum analysis. J. Mater. Process. Technol. 171(3), 451–458 (2006)
Schlesinger, M.E., Ramankutty, N.: An oscillation in the global climate system of period 65–70 years. Nature 367(6465), 723–726 (1994)
Skafidas, P.D., Vlachos, D.S., Avaritsiotis, J.N.: Modelling and simulation of abnormal behaviour of thick-film tin oxide gas sensors in co. Sensors Actuators B: Chem. 21(2), 109–121 (1994)
Vlachos, D.S.: Optimal ship routing based on wind and wave forecasts. Appl. Numer. Anal. Comput. Math. 1(2), 547–551 (2004)
Vlachos, D.S.: Self-calibration techniques of underwater gamma ray spectrometers. J. Environ. Radioact. 82(1), 21–32 (2005)
Vlachos, D.S., Papadopoulos, C.A., Avaritsiotis, J.N.: A technique for suppressing ethanol interference employing seebeck effect devices with carrier concentration modulation. Sensors and Actuators B: Chem. 44(1–3), 239–242 (1997)
Vlachos, D.S., Simos, T.E.: Partitioned linear multistep method for long term integration of the n-body problem. Appl. Numer. Anal. Comput. Math. 1(2), 540–546 (2004)
Vlachos, D.S., Skafidas, P.D., Avaritsiotis, J.N.: Transient effects of tin oxide co sensors in the presence of water vapor. Appl. Phys. Lett. 63(13), 1760–1761 (1993)
Vlachos, D.S., Xenoulis, A.C.: Gas detection sensitivity and cluster size. Nanostruct. Mater. 10(8), 1355–1361 (1998)
Wu, A., Hsieh, W.W., Tang, B.: Neural network forecasts of the tropical pacific sea surface temperatures. Neural Netw. 19(2), 145–154 (2006)
Zhigljavsky, Anatoly: Singular spectrum analysis for time series: introduction to this special issue. Stat. Interface 3(3), 255–258 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mavrogianni, A. (2024). A Method for Fast and Robust Sungular Spectrum Analysis. In: Vlachos, D. (eds) Mathematical Modeling in Physical Sciences. ICMSQUARE 2023. Springer Proceedings in Mathematics & Statistics, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-031-52965-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-52965-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52964-1
Online ISBN: 978-3-031-52965-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)