Abstract
Gait recognition stands as a crucial method for distant person identification. Most state-of-the-art gait recognition frameworks consists of two modules: feature extraction and feature matching. The fixed nature of each part in these modules leads to suboptimal performance in challenging conditions as they are mutually independent. This paper presents the integration of those steps into a single framework. Specifically, we design a unified end-to-end convolutional neural network (CNN) for learning the efficient gait representation and gait recognition. Since dynamic areas contain the most informative part of the human gait and are insensitive to changes in various covariate conditions, we feed the gait entropy images as input to CNN model to capture mostly the motion information. The proposed method is evaluated through experiments conducted on the CASIA-B dataset, specifically for cross-view and cross-walking gait recognition. The experimental results strongly indicate the effectiveness of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Imaging for Crime Detection and Prevention, ICDP 2009, pp. 1–6 (2009)
Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recogn. Lett. 31(13), 2052–2060 (2010)
Cao, K., Jain, A.K.: Automated latent fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 788–800 (2019)
Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. CoRR abs/1811.06186 (2018)
Chen, X., Xu, J.: Uncooperative gait recognition. Pattern Recogn. 53(C), 116–129 (2016)
Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., Red Hook, NY, USA (2012)
Kusakunniran, W., Wu, Q., Zhang, J., Li, H., Wang, L.: Recognizing gaits across views through correlated motion co-clustering. IEEE Trans. Image Process. 23(2), 696–709 (2014)
Lam, T., Cheung, K., Liu, J.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn. 44, 973–987 (2011)
Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_12
Mansur, A., Makihara, Y., Muramatsu, D., Yagi, Y.: Cross-view gait recognition using view-dependent discriminative analysis. In: IEEE International Joint Conference on Biometrics, pp. 1–8 (2014)
Murray., M.: Gait as a total pattern of movement (1967)
Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A.: Long range iris recognition: a survey. Pattern Recogn. 72, 123–143 (2017)
Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)
Sepas-Moghaddam, A.: Face recognition: a novel multi-level taxonomy based survey. IET Biometrics 9, 58–67 (2020)
Sepas-Moghaddam, A., Etemad, A.: Deep gait recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 264–284 (2023)
Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8 (2016)
Singh, J.P., Jain, S., Arora, S., Singh, U.P.: Vision-based gait recognition: a survey. IEEE Access 6, 70497–70527 (2018)
Song, C., Huang, Y., Huang, Y., Jia, N., Wang, L.: GaitNet: an end-to-end network for gait based human identification. Pattern Recogn. 96(C), 106988 (2019)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)
Wang, C., Zhang, J., Wang, L., Pu, J., Yuan, X.: Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2164–2176 (2012)
Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. CoRR abs/1707.03502 (2017)
Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2017)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 441–444 (2006)
Zhang, R., Vogler, C., Metaxas, D.: Human gait recognition at sagittal plane. Image Vis. Comput. 25(3), 321–330 (2007)
Zhao, G., Liu, G., Li, H., Pietikainen, M.: 3D gait recognition using multiple cameras. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 529–534 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nahar, S., Narsingani, S., Patel, Y. (2023). A Unified Convolutional Neural Network for Gait Recognition. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14407. Springer, Cham. https://doi.org/10.1007/978-3-031-47637-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-47637-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47636-5
Online ISBN: 978-3-031-47637-2
eBook Packages: Computer ScienceComputer Science (R0)