[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Unified Convolutional Neural Network for Gait Recognition

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14407))

Included in the following conference series:

  • 470 Accesses

Abstract

Gait recognition stands as a crucial method for distant person identification. Most state-of-the-art gait recognition frameworks consists of two modules: feature extraction and feature matching. The fixed nature of each part in these modules leads to suboptimal performance in challenging conditions as they are mutually independent. This paper presents the integration of those steps into a single framework. Specifically, we design a unified end-to-end convolutional neural network (CNN) for learning the efficient gait representation and gait recognition. Since dynamic areas contain the most informative part of the human gait and are insensitive to changes in various covariate conditions, we feed the gait entropy images as input to CNN model to capture mostly the motion information. The proposed method is evaluated through experiments conducted on the CASIA-B dataset, specifically for cross-view and cross-walking gait recognition. The experimental results strongly indicate the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Imaging for Crime Detection and Prevention, ICDP 2009, pp. 1–6 (2009)

    Google Scholar 

  2. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recogn. Lett. 31(13), 2052–2060 (2010)

    Article  Google Scholar 

  3. Cao, K., Jain, A.K.: Automated latent fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 788–800 (2019)

    Article  Google Scholar 

  4. Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. CoRR abs/1811.06186 (2018)

    Google Scholar 

  5. Chen, X., Xu, J.: Uncooperative gait recognition. Pattern Recogn. 53(C), 116–129 (2016)

    Article  Google Scholar 

  6. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., Red Hook, NY, USA (2012)

    Google Scholar 

  8. Kusakunniran, W., Wu, Q., Zhang, J., Li, H., Wang, L.: Recognizing gaits across views through correlated motion co-clustering. IEEE Trans. Image Process. 23(2), 696–709 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lam, T., Cheung, K., Liu, J.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn. 44, 973–987 (2011)

    Article  MATH  Google Scholar 

  10. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_12

    Chapter  Google Scholar 

  11. Mansur, A., Makihara, Y., Muramatsu, D., Yagi, Y.: Cross-view gait recognition using view-dependent discriminative analysis. In: IEEE International Joint Conference on Biometrics, pp. 1–8 (2014)

    Google Scholar 

  12. Murray., M.: Gait as a total pattern of movement (1967)

    Google Scholar 

  13. Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A.: Long range iris recognition: a survey. Pattern Recogn. 72, 123–143 (2017)

    Article  Google Scholar 

  14. Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)

    Article  Google Scholar 

  15. Sepas-Moghaddam, A.: Face recognition: a novel multi-level taxonomy based survey. IET Biometrics 9, 58–67 (2020)

    Article  Google Scholar 

  16. Sepas-Moghaddam, A., Etemad, A.: Deep gait recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 264–284 (2023)

    Article  Google Scholar 

  17. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8 (2016)

    Google Scholar 

  18. Singh, J.P., Jain, S., Arora, S., Singh, U.P.: Vision-based gait recognition: a survey. IEEE Access 6, 70497–70527 (2018)

    Article  Google Scholar 

  19. Song, C., Huang, Y., Huang, Y., Jia, N., Wang, L.: GaitNet: an end-to-end network for gait based human identification. Pattern Recogn. 96(C), 106988 (2019)

    Article  Google Scholar 

  20. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  21. Wang, C., Zhang, J., Wang, L., Pu, J., Yuan, X.: Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2164–2176 (2012)

    Article  Google Scholar 

  22. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. CoRR abs/1707.03502 (2017)

    Google Scholar 

  23. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2017)

    Article  Google Scholar 

  24. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 441–444 (2006)

    Google Scholar 

  25. Zhang, R., Vogler, C., Metaxas, D.: Human gait recognition at sagittal plane. Image Vis. Comput. 25(3), 321–330 (2007)

    Article  Google Scholar 

  26. Zhao, G., Liu, G., Li, H., Pietikainen, M.: 3D gait recognition using multiple cameras. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 529–534 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Nahar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahar, S., Narsingani, S., Patel, Y. (2023). A Unified Convolutional Neural Network for Gait Recognition. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14407. Springer, Cham. https://doi.org/10.1007/978-3-031-47637-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47637-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47636-5

  • Online ISBN: 978-3-031-47637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics