[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extractable Witness Encryption for the Homogeneous Linear Equations Problem

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14128))

Included in the following conference series:

  • 389 Accesses

Abstract

Witness encryption is a cryptographic primitive which encrypts a message under an instance of an NP language and decrypts the ciphertext using a witness associated with that instance. In the current state of the art, most of the witness encryption constructions are based on multilinear maps. Following the construction of Choi and Vaudenay based on RSA-related problems, we suggest a novel witness key encapsulation mechanism based on the hardness of solving homogeneous linear Diophantine equations (HLE problem). Our arithmetic-based construction aims to solve an issue raised by these authors where the security might be compromised if the adversary is able to find small solutions to a homogeneous linear Diophantine equation, while avoiding the inefficiency of multilinear maps. The security of our scheme is based on a hidden group order and a knowledge assumption.

B. Tran—Supported by the Swiss National Science Foundation (SNSF) through the project grant No 192364 on Post-Quantum Cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By Claim 1, this happens with probability at least \(1-\frac{1}{2^{n-1}}\left( 1+\frac{2}{q}\right) ^n\).

  2. 2.

    For clarity, we omit in the “conditioned to \(\boldsymbol{\lnot } F_\ell ({\boldsymbol{x}},{\boldsymbol{y}})\)” part.

  3. 3.

    ibid.

References

  1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_16

    Chapter  Google Scholar 

  2. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  3. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 308–331. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_14

    Chapter  Google Scholar 

  4. Bombieri, E., Vaaler, J.: On Siegel’s lemma. Inventiones Mathematicae 73, 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  6. Choi, G., Vaudenay, S.: Towards witness encryption without multilinear maps. In: Park, J.H., Seo, S. (eds.) ICISC 2021. LNCS, vol. 13218, pp. 28–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08896-4_2

    Chapter  Google Scholar 

  7. Choi, G.: Time in cryptography (2020). https://infoscience.epfl.ch/record/279784

  8. Chvojka, P., Jager, T., Kakvi, S.A.: Offline witness encryption with semi-adaptive security. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 231–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_12

    Chapter  MATH  Google Scholar 

  9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  10. van Emde-Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in a lattice (1981). https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/abstract.html. Accessed 13 Feb 2022

  11. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_6

    Chapter  Google Scholar 

  12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 467–476 (2013)

    Google Scholar 

  14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  15. Jain, A., Lin, H., Sahai, A.: Indistinguishability Obfuscation from Well-Founded Assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020)

    Google Scholar 

  16. Kaltofen, E.L., Storjohann, A.: Complexity of computational problems in exact linear algebra. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, pp. 227–233. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  18. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_21

    Chapter  Google Scholar 

  20. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  21. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption. Des. Codes Crypt. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-018-0461-x

    Article  MathSciNet  MATH  Google Scholar 

  22. May, T.C.: Time-release crypto (1993). https://cypherpunks.venona.com/date/1993/02/msg00129.html. Accessed 16 Feb 2022

  23. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM 21(4), 294–299 (1978)

    Article  MATH  Google Scholar 

  24. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  25. Nymann, J.: On the probability that \(k\) positive integers are relatively prime. J. Number Theory 4(5), 469–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release Crypto (1996)

    Google Scholar 

  27. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shoup, V.: A computational introduction to number theory and algebra (2009). https://shoup.net/ntb/ntb-v2.pdf. Accessed 13 Feb 2022

  30. Siegel, C.L.: Über einige Anwendungen Diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl 1, 41–69 (1929). reprinted as pp. 209–266 of Gesammelte Abhandlungen I. Springer, Berlin (1966)

    Google Scholar 

  31. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich, Zürich (2000). https://doi.org/10.3929/ethz-a-004141007. Diss., Technische Wissenschaften ETH Zürich, Nr. 13922, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédikt Tran .

Editor information

Editors and Affiliations

A Correctness Proof

A Correctness Proof

In this section, we prove the unproved assertions of Sect. 3.1. To that end, we need some results involving abstract algebra.

Lemma 4

Let \(L\ge m\) be positive integers. Let \(\mathcal {U}\) be the uniform distribution over and \(\mathcal {Z}= \mathcal {U}\bmod {m}\). For all , we have

figure gb

Proof

Let and . Then, . Since , this completes the proof.   \(\square \)

Lemma 5

Let \(L\ge m\) be positive integers and \(G\trianglelefteq \mathbb {Z}^n\) be a group. Let \(\mathcal {U}\) be the uniform distribution over and let be its projection in \(G_L\bmod {m}\). For all \(\boldsymbol{z}\in G_L\bmod {m}\), we have

figure gi

Proof

Let \(\boldsymbol{z}\in G_L\bmod {m}\) and . A similar argument as in the proof of Lemma 4 establishes \(s(\boldsymbol{z})\le \lceil L/m\rceil ^n\le \left( 1+L/m\right) ^n\). On the other hand, since \(G\bmod {m}\subset G_L\), it follows that . In particular, . Therefore,

figure gm

   \(\square \)

Proof of Claim 1, page 13. Since is bijective, and have the same probability distributions. Thus, solely depends on the distribution of . Let be fixed and assume that \(\ell \ge q\). Then, the probability that a given component of is equal to is at most 1/r. Since these components are identically and independently distributed, it follows that

figure gv

On the other hand, assume that \(\ell < q\). By Lemma 4 applied to \(q\ge r\), we get

figure gw

Summing these probabilities as \(\varepsilon _0\) ranges over establishes the desired bounds and the remaining inequality is a consequence of the Fréchet inequality.    \(\square \)

Lemma 6

Let \(\textsf{ct}= ({\boldsymbol{x}},{\boldsymbol{y}})\in \mathbb {Z}^n\times \mathbb {Z}^n\) be a ciphertext produced by Algorithm 1 corresponding to a \(\textsf{HLE}\) instance and a hidden prime p and consider a nonzero vector . Let and assume that there exist a prime factor \(\ell \) of and a prime factor r of \(\varphi (\ell )\) such that the event \(F_{\ell ,r}({\boldsymbol{x}},{\boldsymbol{y}})\) defined by (3.5) does not hold. If denotes the uniform distribution over , then

figure he

Stated otherwise, at most \(\frac{|H|}{2^n}\) elements from H give rise to a multiple of \(\ell \) under the mapping defined by (3.4).Footnote 2

Proof

Let \(\phi =\varphi (\ell )\). Since \(\ell \) is a prime factor of and \(y_i\) is invertible modulo , the latter is invertible modulo \(\ell \) and \(\text {dlog}_\ell ({\boldsymbol{y}})\) is well-defined. In particular, if and only if . Without loss of generality, \({H={{\,\textrm{ker}\,}}_{}({{\boldsymbol{x}}}^{\!\top })\bmod {\phi }}\) and are nonempty subgroups of . If \(\boldsymbol{z}\) uniformly distributed in , then

figure ho

Fix an isomorphism where each \(m_k=r_k^{e_k}\) is a prime power and denote by the canonical projection onto the \(r_k\)-primary component. By definition, there exist integers \(0\le e'_k \le e''_k\le e_k\) such that

figure hr

By assumption, there exists k such that has no solution for \(\varepsilon \) in . In particular, the inclusion \(\rho _k(H\cap {{\,\textrm{ker}\,}}(\text {dlog}_\ell ({\boldsymbol{y}})))\triangleleft \rho _k(H)\) is strict, namely \(e'_k < e''_k\). Therefore, \(\bar{\vartheta } \le \frac{1}{r_k^n} \le \frac{1}{2^n}\).   \(\square \)

Proof of Claim 2, page 13. Let \(\phi =\varphi (\ell )\) and \(H = {{\,\textrm{ker}\,}}_{}({{\boldsymbol{x}}}^{\!\top })\bmod {\phi }\). Let \({\boldsymbol{\beta }}\) be uniformly distributed in \({{\,\textrm{ker}\,}}_{L}({{\boldsymbol{x}}}^{\!\top })\). Lemma 5 applied to \(G = {{\,\textrm{ker}\,}}_{}({{\boldsymbol{x}}}^{\!\top })\subset \mathbb {Z}^n\) implies that . By Lemma 6, at most \(\frac{|H|}{2^n}\) elements in H give rise to a multiple of \(\ell \) via \({{\boldsymbol{\beta }}\mapsto \sigma _\delta ({\boldsymbol{y}},{\boldsymbol{\beta }})}\). ThereforeFootnote 3,

figure hv

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, B., Vaudenay, S. (2023). Extractable Witness Encryption for the Homogeneous Linear Equations Problem. In: Shikata, J., Kuzuno, H. (eds) Advances in Information and Computer Security. IWSEC 2023. Lecture Notes in Computer Science, vol 14128. Springer, Cham. https://doi.org/10.1007/978-3-031-41326-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41326-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41325-4

  • Online ISBN: 978-3-031-41326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics