[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Quantification of the Impact of Forming-Induced Residual Stresses on Subsequent Cutting Operations for Aluminum AA7075 Thick Sheets

  • Conference paper
  • First Online:
Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity (ICTP 2023)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 1343 Accesses

Abstract

Residual stresses in metal components induced by forming operations significantly influence subsequent manufacturing steps. In particular, two aspects for the final processing of formed thick sheets by cutting and machining operations result: First, the achievable geometric accuracy is limited by distortion due to the modification of residual stresses across the process step sequence. In addition, the residual stresses present in the final component are determined by the process parameter settings of the individual substeps. In this work, the influence of the forming-induced residual stresses on a subsequent cutting operation was quantitatively investigated. For this purpose, the step sequence of forming and wet abrasive cutting for aluminum AA7075 thick sheets was implemented both numerically and experimentally. This allows the residual stress redistribution to be taken into account in future virtual setups of the production chain by specifically adjusting the process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Z.-J., Chen, W.-Y., Zhang, Y.-D., et al.: Study on the machining distortion of thin-walled part caused by redistribution of residual stress. Chinese J. Aeronaut. 18, 175–179 (2005). https://doi.org/10.1016/S1000-9361(11)60325-7

    Article  Google Scholar 

  2. Groeneveld, H., Mordechai, C.: Airplane Cockpit Reduced from Two Hundred Parts to One: Sheet Metal Simulation Tested for Explosive Forming in Aerospace. https://formingworld.com/aerospace-autoform-3d-metal-forming/ (2021). Last accessed 19 Apr 2023

  3. Liu, L., Sun, J., Chen, W., et al.: Study on the machining distortion of aluminum alloy parts induced by forging residual stresses. Proc. Inst. Mech. Eng., Part B 231, 618–627 (2017). https://doi.org/10.1177/0954405415583805

    Article  CAS  Google Scholar 

  4. van den Berg, N., Xin, H., Veljkovic, M.: Effects of residual stresses on fatigue crack propagation of an orthotropic steel bridge deck. Mater. Des. 198, 109294 (2021). https://doi.org/10.1016/j.matdes.2020.109294

    Article  CAS  Google Scholar 

  5. Ball, D.L., James, M., Bucci, R.J., et al.: The impact of forging residual stress on fatigue in aluminum. In: 56th AIAA/ASCE/AHS/ASC Structural Structural Dynamics Material Conference (2015). https://doi.org/10.2514/6.2015-0386

  6. Stahl, J., Müller, D., Pätzold, I., et al.: The influence of residual stresses induced by near-net-shape blanking processes on the fatigue behavior under bending loads. IOP Conf.: Ser. Mater. Sci. Eng. 651, 12086 (2019). https://doi.org/10.1088/1757-899X/651/1/012086

    Article  CAS  Google Scholar 

  7. Bai, L., Jiang, K., Gao, L.: The influence and mechanism of residual stress on the corrosion behavior of welded structures. Mat. Res. 21, 162 (2018). https://doi.org/10.1590/1980-5373-MR-2018-01660

    Article  Google Scholar 

  8. Gilch, I., et al.: Impact of residual stress evoked by pyramidal embossing on the magnetic material properties of non-oriented electrical steel. Arch. Appl. Mech. 91(8), 3513–3526 (2021). https://doi.org/10.1007/s00419-021-01912-6

    Article  Google Scholar 

  9. Maaß, F., et al.: Forming mechanisms-related residual stress development in single point incremental forming. Prod. Eng. Res. Devel. 13(2), 149–156 (2018). https://doi.org/10.1007/s11740-018-0867-3

    Article  Google Scholar 

  10. Maaß, F., Hahn, M., Dobecki, M., et al.: Influence of tool path strategies on the residual stress development in single point incremental forming. Procedia Manuf. 29, 53–58 (2019). https://doi.org/10.1016/j.promfg.2019.02.105

    Article  Google Scholar 

  11. Maier, D., Stebner, S., Ismail, A., et al.: The influence of freeform bending process parameters on residual stresses for steel tubes. Adv. Manuf. 2, 100047 (2021). https://doi.org/10.1016/j.aime.2021.100047

    Article  Google Scholar 

  12. Walzer, S., Simon, N., Liewald, M., Gibmeier, J.: Local creation of uniform residual stresses into sheet metal components by means of multiple one-side embossing. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds.) Forming the Future. TMMMS, pp. 2357–2368. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75381-8_197

    Chapter  Google Scholar 

  13. Kleiner, M., Krux, R., Homberg, W.: Analysis of residual stresses in high-pressure sheet metal forming. CIRP Ann. 53, 211–214 (2004). https://doi.org/10.1016/S0007-8506(07)60681-7

    Article  Google Scholar 

  14. Wimmer, M., Rinck, P., Kleinwort, R., Zah, M.F.: Methodology for a model-based control of the boundary zone properties during milling of TI-6AL-4V. MM Sci. J. 2019(04), 3214–3219 (2019). https://doi.org/10.17973/MMSJ.2019_11_2019073

    Article  Google Scholar 

  15. Abboud, E.: Characterization of Machining-Induced Residual Stresses in Titanium-Based Alloys. PhD Thesis, McGill University, Montreal, Canada (2015)

    Google Scholar 

  16. Li, B., Jiang, X., Yang, J., et al.: Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part. J. Mater. Process. Technol. 216, 223–233 (2015). https://doi.org/10.1016/j.jmatprotec.2014.09.016

    Article  Google Scholar 

  17. Robinson, J.S., Tanner, D.A., Truman, C.E., et al.: Measurement and prediction of machining induced redistribution of residual stress in the aluminium alloy 7449. Exp. Mech. 51, 981–993 (2011). https://doi.org/10.1007/s11340-010-9389-4

    Article  Google Scholar 

  18. Schieber, C., Hettig, M., Zaeh, M.F., et al.: Evaluation of approaches to compensate the thermo-mechanical distortion effects during profile grinding. Procedia CIRP 102, 331–336 (2021). https://doi.org/10.1016/j.procir.2021.09.057

    Article  Google Scholar 

  19. Denkena, B., Leon, L.D.: Milling induced residual stresses in structural parts out of forged aluminium alloys. Int. J. Mach. Mach. Mater. 4, 335 (2008). https://doi.org/10.1504/IJMMM.2008.023717

    Article  Google Scholar 

  20. Werke, M., Hossain, M., Semere, D. et al.: Machining Distortion Analysis of Aerospace Components using the Contour Method, pp. 216–222. https://doi.org/10.3384/ecp19162025

  21. Deutsches Institut für Normung: DIN EN 515 – Aluminium and aluminium alloys – Wrought products – Temper designations (2017)

    Google Scholar 

  22. Weinschenk, A., Volk, W.: FEA-based development of a new tool for systematic experimental validation of nonlinear strain paths and design of test specimens. In: AIP Conference Proceedings, vol. 1896, pp. 020009-1–020009-6 (2017). https://doi.org/10.1063/1.5007966

  23. SINT Technology MTS3000-Restan product page. https://www.sintechnology.com/de/produkte/mts3000-restan/. Last accessed 19 Apr 2023

  24. Baeker, M.: SpectrumBaker – better contour plots for Abaqus. Python plugin. https://doi.org/10.13140/RG.2.2.10738.91845 (2016). Last accessed 19 Apr 2023

  25. Scandola, L., et al.: Development of a numerical compensation framework for geometrical deviations in bulk metal forming exploiting a surrogate model and computed compatible stresses. Int.J. Mater. Form. 14(5), 901–916 (2021). https://doi.org/10.1007/s12289-020-01603-7

    Article  Google Scholar 

  26. Gan, W., Wagoner, R.H.: Die design method for sheet springback. Int. J. Mech. Sci. 46, 1097–1113 (2004). https://doi.org/10.1016/j.ijmecsci.2004.06.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for supporting this work carried out within the framework of the collaborative research project 457270653 (VO 1487/63-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ott, M., Mayer, M., Li, Y., Steinlehner, F., Zaeh, M.F., Volk, W. (2024). Quantification of the Impact of Forming-Induced Residual Stresses on Subsequent Cutting Operations for Aluminum AA7075 Thick Sheets. In: Mocellin, K., Bouchard, PO., Bigot, R., Balan, T. (eds) Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-40920-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40920-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40919-6

  • Online ISBN: 978-3-031-40920-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics