[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algorithm Selection for Paracoherent Answer Set Computation

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2019)

Abstract

Answer Set Programming (ASP) is a well-established AI formalism rooted in nonmonotonic reasoning. Paracoherent semantics for ASP have been proposed to derive useful conclusions also in the absence of answer sets caused by cyclic default negation. Recently, several different algorithms have been proposed to implement them, but no algorithm is always preferable to the others in all instances. In this paper, we apply algorithm selection techniques to devise a more efficient paracoherent answer set solver combining existing algorithms. The effectiveness of the approach is demonstrated empirically running our system on existing benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adrian, W.T., et al.: The ASP system DLV: advancements and applications. KI 32(2–3), 177–179 (2018)

    Google Scholar 

  2. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expansion from the web via ASP. In: ICLP (Technical Communications). OASICS, vol. 58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  3. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  4. Alviano, M., Amendola, G., Peñaloza, R.: Minimal undefinedness for fuzzy answer sets. In: AAAI 2017, pp. 3694–3700 (2017)

    Google Scholar 

  5. Amendola, G.: Dealing with incoherence in ASP: split semi-equilibrium semantics. In: DWAI@AI*IA. CEUR Workshop Proceedings, vol. 1334, pp. 23–32 (2014)

    Google Scholar 

  6. Amendola, G.: Preliminary results on modeling interdependent scheduling games via answer set programming. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272. CEUR-WS.org (2018)

    Google Scholar 

  7. Amendola, G.: Solving the stable roommates problem using incoherent answer set programs. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272 (2018)

    Google Scholar 

  8. Amendola, G.: Towards quantified answer set programming. In: RCRA@FLoC. CEUR Workshop Proceedings, vol. 2271. CEUR-WS.org (2018)

    Google Scholar 

  9. Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation of paracoherent answer sets. In: AAAI, pp. 1034–1040 (2017)

    Google Scholar 

  10. Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for efficient computation of paracoherent answer sets. In: AAAI 2018, pp. 1034–1040 (2018)

    Google Scholar 

  11. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set programming to the conference paper assignment problem. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_13

    Chapter  Google Scholar 

  12. Amendola, G., Dodaro, C., Ricca, F.: ASPQ: an ASP-based 2QBF solver. In: QBF@SAT. CEUR Workshop Proceedings, vol. 1719, pp. 49–54 (2016)

    Google Scholar 

  13. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)

    Article  MathSciNet  Google Scholar 

  14. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 457–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_32

    Chapter  Google Scholar 

  15. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU games via answer set programming. In: IJCAI 2016, pp. 38–45 (2016)

    Google Scholar 

  16. Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random Boolean formulas and disjunctive logic programs. In: IJCAI, pp. 532–538 (2017)

    Google Scholar 

  17. Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2QBF formulas and ASP programs. In: KR. AAAI Press (2018)

    Google Scholar 

  18. Amendola, G., Ricca, F., Truszczynski, M.: Random models of very hard 2QBF and disjunctive programs: an overview. In: ICTCS. CEUR Workshop Proceedings, CEUR-WS.org (2018)

    Google Scholar 

  19. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AICOM 24(2), 147–164 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier, A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Programming. LNCS, vol. 6125, pp. 159–182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14309-0_8

    Chapter  MATH  Google Scholar 

  21. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  22. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

    Article  Google Scholar 

  23. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)

    Article  MathSciNet  Google Scholar 

  24. Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP 15(1), 35–78 (2015). https://doi.org/10.1017/S1471068413000598

    Article  MathSciNet  MATH  Google Scholar 

  25. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills management context. AI Commun. 19(2), 137–154 (2006)

    MathSciNet  Google Scholar 

  26. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation techniques and systems for answer set programming: a survey. In: IJCAI, pp. 5450–5456 (2018)

    Google Scholar 

  27. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competition. J. Artif. Intell. Res. 60, 41–95 (2017)

    Article  MathSciNet  Google Scholar 

  28. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)

    Article  Google Scholar 

  29. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based system for team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11503-5_5

    Chapter  Google Scholar 

  30. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowledge management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 591–597. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6_63

    Chapter  Google Scholar 

  31. Hoos, H., Kaminski, R., Schaub, T., Schneider, M.T.: ASPeed: ASP-based solver scheduling. In: Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 176–187 (2012)

    Google Scholar 

  32. Hoos, H., Lindauer, M.T., Schaub, T.: Claspfolio 2: advances in algorithm selection for answer set programming. TPLP 14(4–5), 569–585 (2014)

    MATH  Google Scholar 

  33. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and competitions. AI Mag. 37(3), 45–52 (2016)

    Article  Google Scholar 

  34. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Maratea, M., Pulina, L., Ricca, F.: Applying machine learning techniques to ASP solving. In: Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 37–48 (2012)

    Google Scholar 

  37. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set programming. TPLP 14(6), 841–868 (2014)

    MathSciNet  Google Scholar 

  38. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms 63(1–3), 70–89 (2008)

    Article  MathSciNet  Google Scholar 

  39. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  40. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log. Comput. 5(3), 265–285 (1995)

    Article  MathSciNet  Google Scholar 

  41. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 690974 for the project “MIREL: MIning and REasoning with Legal texts”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Amendola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amendola, G., Dodaro, C., Faber, W., Pulina, L., Ricca, F. (2019). Algorithm Selection for Paracoherent Answer Set Computation. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19570-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19569-4

  • Online ISBN: 978-3-030-19570-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics