Abstract
Molecular Docking is an essential tool in drug discovery. The procedure for finding the best energy affinity between ligand-receptor molecules is a computationally expensive optimization process because of the roughness of the search space and the thousands of possible conformations of ligand. In this way, besides a realistic energy function to evaluate possible solutions, a robust search method must be applied to avoid local minimums. Recently, many algorithms have been proposed to solve the docking problem, mainly based on Evolutionary Strategies. However, the question remained unsolved and its needed the development of new and efficient techniques. In this paper, we developed a Biased Random Key Genetic Algorithm, as global search procedure, hybridized with three variations of Hill-climbing and a Simulated Annealing version, as local search strategies. To evaluate the receptor-ligand binding affinity we used the Rosetta scoring function. The proposed approaches have been tested on a benchmark of protein-ligand complexes and compared to existing tools AUTODOCK VINA, DOCKTHOR, and jMETAL. A statistical test was performed on the results, and shown that the application of local search methods provides better solutions for the molecular docking problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
López-Camacho, E., Godoy, M.J.G., Nebro, A.J., Aldana-Montes, J.F.: jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 20, 437–438 (2013)
García-Godoy, M.J., López-Camacho, E., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Solving molecular docking problems with multi-objective metaheuristics. Molecules 20(6), 10154–10183 (2015)
Stockwell, G.R., Thornton, J.M.: Conformational diversity of ligands bound to proteins. J. Mol. Biol. 356(4), 928–944 (2006)
Sadjad, B., Zsoldos, Z.: Toward a robust search method for the protein-drug docking problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 1120–1133 (2011)
Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32(1), 335–373 (2003)
Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: IEEE CEC, pp. 443–450 (2005)
Nebro, A., Durillo, J., García-Nieto, J., Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making, pp. 66–73 (2009)
Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011)
Leonhart, P.F., Spieler, E., Ligabue-Braun, R., Dorn, M.: A biased random key genetic algorithm for the protein–ligand docking problem. Soft Comput. 1–22 (2018)
Gray, J.J., et al.: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331(1), 281–299 (2003)
Andrusier, N., Mashiach, E., Nussinov, R., Wolfson, H.: Principles of flexible protein-protein docking. Proteins 73(2), 271–289 (2008)
Chaudhury, S., Lyskov, S., Gray, J.J.: PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010)
Huang, S.Y., Zou, X.: Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11(8), 3016 (2010)
Lameijer, E.W., Back, T., Kok, J.N., Ijzerman, A.D.P.: Evolutionary algorithms in drug design. Nat. Comput. 4, 177–243 (2005)
Rosin, C.D., Halliday, R.S., Hart, W.E., Belew, R.K.: A comparison of global and local search methods in drug docking. In: Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 221–228. Morgan Kaufmann (1997)
Ruiz-Tagle, B., Villalobos-Cid, M., Dorn, M., Inostroza-Ponta, M.: Evaluating the use of local search strategies for a memetic algorithm for the protein-ligand docking problem. In: 2017 36th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–12, October 2017
Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct. Funct. Bioinf. 47(4), 409–443 (2002)
Taylor, R., Jewsbury, P., Essex, J.: A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 16(3), 151–166 (2002)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Courier Corporation, North Chelmsford (1998)
Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization, 1st edn. Wiley, New York (1997)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)
Gonçalves, J.F., de Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. J. Heuristics 8(6), 629–642 (2002)
Goulart, N., de Souza, S.R., Dias, L.G.S., Noronha, T.F.: Biased random-key genetic algorithm for fiber installation in optical network optimization. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 2267–2271, June 2011
Molina, D., Lozano, M., Herrera, F.: Memetic algorithm with local search chaining for continuous optimization problems: a scalability test. In: ISDA 2009–9th International Conference on Intelligent Systems Design and Applications, pp. 1068–1073 (2009)
Molina, D., Lozano, M., Sánchez, A.M., Herrera, F.: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft Comput. 15(11), 2201–2220 (2011)
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)
Schrödinger, LLC: The AxPyMOL molecular graphics plugin for Microsoft PowerPoint, version 1.8, November 2015
O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open babel: an open chemical toolbox. J. Cheminf. 3(1), 1–14 (2011)
Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)
de Magalhães, C.S., Almeida, D.M., Barbosa, H.J.C., Dardenne, L.E.: A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 289, 206–224 (2014)
Durillo, J., Nebro, A.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)
Dunn, O.J.: Multiple comparisons using rank sums. Technometrics 6(3), 241–252 (1964)
Acknowledgements
This work was supported by grants from FAPERGS [16/2551-0000520-6], MCT/CNPq [311022/2015-4; 311611/2018-4], CAPES-STIC AMSUD [88887.135130/2017-01] - Brazil, Alexander von Humboldt-Stiftung (AvH) [BRA 1190826 HFST CAPES-P] - Germany. This study was financed in part by the Coordenacão de Aperfei çoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Leonhart, P.F., Dorn, M. (2019). A Biased Random Key Genetic Algorithm with Local Search Chains for Molecular Docking. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-16692-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16691-5
Online ISBN: 978-3-030-16692-2
eBook Packages: Computer ScienceComputer Science (R0)