Abstract
In this paper, we show that the techniques widely used in multi-objective optimization can help a single-objective local search procedure escape from local optima and find better solutions. The Traveling Salesman Problem (TSP) is selected as a case study. Firstly the original TSP \(f_0\) is decomposed into two TSPs \(f_1\) and \(f_2\) such that \(f_0 = f_1\,+\,f_2\). Then we propose the Non-Dominance Search (NDS) method which applies the non-domination concept on \((f_1,f_2)\) to guide a local search out of the local optima of \(f_0\). In the experimental study, NDS is combined with Iterated Local Search (ILS), a well-known metaheuristic for the TSP. Experimental results on some selected TSPLIB instances show that the proposed NDS can significantly improve the performance of ILS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Shi, J., Zhang, Q., Derbel, B., Liefooghe, A., Verel, S.: Using parallel strategies to speed up pareto local search. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 62–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_6
Shi, J., Zhang, Q., Derbel, B., Liefooghe, A., Sun, J.: Parallel pareto local search revisited: first experimental results on bi-objective UBQP. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 753–760. ACM (2018)
Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_19
Jensen, M.T.: Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimisation. J. Math. Model. Algorithms 3(4), 323–347 (2004)
Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 51–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_8
Jähne, M., Li, X., Branke, J.: Evolutionary algorithms and multi-objectivization for the travelling salesman problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 595–602. ACM (2009)
Deb, K., Saha, A.: Multimodal optimization using a bi-objective evolutionary algorithm. Evol. Comput. 20(1), 27–62 (2012)
Coello, C.A.C.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim.+ A35 32(3), 275–308 (2000)
Mezura-Montes, E., Coello, C.A.C.: Constrained optimization via multiobjective evolutionary algorithms. In: Knowles, J., Corne, D., Deb, K., Chair, D.R. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 53–75. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72964-8_3
Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems. In: The 2009 IEEE Congress on Evolutionary Computation, pp. 3127–3134. IEEE (2009)
Bui, L.T., Abbass, H.A., Branke, J.: Multiobjective optimization for dynamic environments. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2349–2356. IEEE (2005)
Alsheddy, A.: A penalty-based multi-objectivization approach for single objective optimization. Inf. Sci. 442, 1–17 (2018)
Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)
Shi, J., Zhang, Q., Tsang, E.: EB-GLS: an improved guided local search based on the big valley structure. Memetic Comput. 10, 1–18 (2017)
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, pp. 363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12
Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)
Acknowledgments
The work described in this paper was supported by the National Natural Science Foundation of China under Grant 61876163.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, J., Sun, J., Zhang, Q. (2019). Multi-objective Techniques for Single-Objective Local Search: A Case Study on Traveling Salesman Problem. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-12598-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12597-4
Online ISBN: 978-3-030-12598-1
eBook Packages: Computer ScienceComputer Science (R0)