Abstract
We present a brief overview of random matrix theory (RMT) with the objectives of highlighting the computational results and applications in financial markets as complex systems. An oft-encountered problem in computational finance is the choice of an appropriate epoch over which the empirical cross-correlation return matrix is computed. A long epoch would smoothen the fluctuations in the return time series and suffers from non-stationarity, whereas a short epoch results in noisy fluctuations in the return time series and the correlation matrices turn out to be highly singular. An effective method to tackle this issue is the use of the power mapping, where a non-linear distortion is applied to a short epoch correlation matrix. The value of distortion parameter controls the noise-suppression. The distortion also removes the degeneracy of zero eigenvalues. Depending on the correlation structures, interesting properties of the eigenvalue spectra are found. We simulate different correlated Wishart matrices to compare the results with empirical return matrices computed using the S&P 500 (USA) market data for the period 1985–2016. We also briefly review two recent applications of RMT in financial stock markets: (i) Identification of “market states” and long-term precursor to a critical state; (ii) Characterization of catastrophic instabilities (market crashes).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bar-Yam, Y.: General Features of Complex Systems. Encyclopedia of Life Support Systems (EOLSS). UNESCO, EOLSS Publishers, UK (2002)
Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis, p. 315. Wiley-Interscience, New York (1980)
Bouchaud, J.P., Potters, M.: Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2003)
Cartan, É.: Sur les domaines bornés homogènes de lespace den variables complexes. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 11, pp. 116–162. Springer, Berlin (1935)
Chakraborti, A., Muni Toke, I., Patriarca, M., Abergel, F.: Econophysics review: I. empirical facts. Quant. Financ. 11(7), 991–1012 (2011)
Chakraborti, A., Muni Toke, I., Patriarca, M., Abergel, F.: Econophysics review: II. agent-based models. Quant. Financ. 11(7), 1013–1041 (2011)
Chakraborti, A., Patriarca, M., Santhanam, M.: Financial time-series analysis: a brief overview. In: Econophysics of Markets and Business Networks, pp. 51–67. Springer, Berlin (2007)
Chakraborti, A., Sharma, K., Pharasi, H.K., Das, S., Chatterjee, R., Seligman, T.H.: Characterization of catastrophic instabilities: market crashes as paradigm (2018). arXiv:1801.07213
Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)
Gell-Mann, M.: What is complexity? Complexity 1, 16–19 (1995)
Guhr, T., Kälber, B.: A new method to estimate the noise in financial correlation matrices. J. Phys. A: Math. Gen. 36(12), 3009 (2003)
Hua, L.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, vol. 6. American Mathematical Society (1963)
Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)
Leviandier, L., Lombardi, M., Jost, R., Pique, J.P.: Fourier transform: a tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56(23), 2449 (1986)
Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2007)
Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sbornik 1(4), 457 (1967)
Martinez, M.M.R.: Caracterización estadistica de mercados europeos. Master’s thesis, UNAM (2018)
Mehta, M.L.: Random Matrices. Academic (2004)
Mikosch, T., Stărică, C.: Nonstationarities in financial time series, the long-range dependence, and the igarch effects. Rev. Econ. Stat. 86(1), 378–390 (2004)
Münnix, M.C., Shimada, T., Schäfer, R., Leyvraz, F., Seligman, T.H., Guhr, T., Stanley, H.E.: Identifying states of a financial market. Sci. Rep. 2, 644 (2012)
Ochoa, S.: Mapeo de Guhr-Kaelber aplicado a matrices de correlación singulares de dos mercados financieros. Master’s thesis, UNAM (2018)
Pandey, A., et al.: Correlated Wishart ensembles and chaotic time series. Phys. Rev. E 81(3), 036202 (2010)
Pharasi, H.K., Sharma, K., Chatterjee, R., Chakraborti, A., Leyvraz, F., Seligman, T.H.: Identifying long-term precursors of financial market crashes using correlation patterns. New J. Phys. 20, 103041 (2018). arXiv:1809.00885
Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Random matrix approach to cross correlations in financial data. Phys. Rev. E 65(6), 066126 (2002)
Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83(7), 1471 (1999)
Schäfer, R., Nilsson, N.F., Guhr, T.: Power mapping with dynamical adjustment for improved portfolio optimization. Quant. Financ. 10(1), 107–119 (2010)
Sharma, K., Shah, S., Chakrabarti, A.S., Chakraborti, A.: Sectoral co-movements in the Indian stock market: a mesoscopic network analysis, pp. 211–238 (2017)
Shuryak, E.V., Verbaarschot, J.: Random matrix theory and spectral sum rules for the Dirac operator in QCD. Nuclear Phys. A 560(1), 306–320 (1993)
Sinha, S., Chatterjee, A., Chakraborti, A., Chakrabarti, B.K.: Econophysics: an Introduction. Wiley, New York (2010)
Utsugi, A., Ino, K., Oshikawa, M.: Random matrix theory analysis of cross correlations in financial markets. Phys. Rev. E 70(2), 026110 (2004)
Vemuri, V.: Modeling of Complex Systems: An Introduction. Academic, New York (1978)
Vinayak, Prosen, T., Buc̆a, B., Seligman, T.H.: Spectral analysis of finite-time correlation matrices near equilibrium phase transitions. Europhys. Lett. 108(2), 20006 (2014)
Vinayak, Schäfer, R., Seligman, T.H.: Emerging spectra of singular correlation matrices under small power-map deformations. Phys. Rev. E 88(3), 032115 (2013)
Vinayak, Seligman, T.H.: Time series, correlation matrices and random matrix models. In: AIP Conference Proceedings, vol. 1575, pp. 196–217. AIP (2014)
Vyas, M., Guhr, T., Seligman, T.H.: Multivariate analysis of short time series in terms of ensembles of correlation matrices (2018). arXiv:1801.07790
Wigner, E.: Ep wigner. Ann. Math. 53, 36 (1951)
Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 325–327 (1958)
Wigner, E.P.: Random matrices in physics. SIAM Rev. 9(1), 1–23 (1967)
Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 32–52 (1928)
Yahoo finance database. https://finance.yahoo.co.jp/ (2017). Accessed 7 July 2017, using the R open source programming language and software environment for statistical computing and graphics
Acknowledgements
The authors thank R. Chatterjee, S. Das and F. Leyvraz for various fruitful discussions. A.C. and K.S. acknowledge the support by grant number BT/BI/03/004/2003(C) of Govt. of India, Ministry of Science and Technology, Department of Biotechnology, Bioinformatics division, University of Potential Excellence-II grant (Project ID-47) of JNU, New Delhi, and the DST-PURSE grant given to JNU by the Department of Science and Technology, Government of India. K.S. acknowledges the University Grants Commission (Ministry of Human Resource Development, Govt. of India) for her senior research fellowship. H.K.P. is grateful for postdoctoral fellowship provided by UNAM-DGAPA. A.C., H.K.P., K.S. and T.H.S. acknowledge support by Project CONACyT Fronteras 201, and also support from the project UNAM-DGAPA-PAPIIT IG 100616.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pharasi, H.K., Sharma, K., Chakraborti, A., Seligman, T.H. (2019). Complex Market Dynamics in the Light of Random Matrix Theory. In: Abergel, F., Chakrabarti, B., Chakraborti, A., Deo, N., Sharma, K. (eds) New Perspectives and Challenges in Econophysics and Sociophysics. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-030-11364-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-11364-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11363-6
Online ISBN: 978-3-030-11364-3
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)