Abstract
Modal linear regression (MLR) is a standard method for modeling the conditional mode of a response variable using a linear combination of explanatory variables. It is effective when dealing with response variables with an asymmetric, multi-modal distribution. Because of the nonparametric nature of MLR, it is difficult to construct a statistical model manifold in the sense of information geometry. In this work, a model manifold is constructed using observations instead of explicit parametric models. We also propose a method for constructing a data manifold based on an empirical distribution. The em algorithm, which is a geometric formulation of the EM algorithm, of MLR is shown to be equivalent to the conventional EM algorithm of MLR.
Supported by JST KAKENHI 16K16108, 17H01793 and JST CREST JPMJCR1761.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amari, S.: Information geometry of the EM and \(em\) algorithms for neural networks. Neural Netw. 8(9), 1379–1408 (1995)
Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society (2000)
Baldauf, M., Silva, J.S.: On the use of robust regression in econometrics. Econ. Lett. 114(1), 124–127 (2012)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B, 1–38 (1977)
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics - The Approach Based on Influence Functions. Wiley (1986)
Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley (2011)
Kemp, G.C., Silva, J.S.: Regression towards the mode. J. Econometrics 170(1), 92–101 (2012)
Lee, M.J.: Mode regression. J. Econometrics 42(3), 337–349 (1989)
Li, J., Ray, S., Lindsay, B.G.: A nonparametric statistical approach to clustering via mode identification. J. Mach. Learn. Res. 8, 1687–1723 (2007)
Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.: Information geometry of u-boost and Bregman divergence. Neural Comput. 16(7), 1437–1481 (2004)
Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist. 23(5), 1543–1561 (1995)
Takano, K., Hino, H., Akaho, S., Murata, N.: Nonparametric e-mixture estimation. Neural Comput. 28(12), 2687–2725 (2016)
Yao, W., Li, L.: A new regression model: modal linear regression. Scand. J. Stat. 41(3), 656–671 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Sando, K., Akaho, S., Murata, N., Hino, H. (2018). Information Geometric Perspective of Modal Linear Regression. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-04182-3_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04181-6
Online ISBN: 978-3-030-04182-3
eBook Packages: Computer ScienceComputer Science (R0)