Abstract
Multi-class classification problems are often solved via reduction, i.e., by breaking the original problem into a set of presumably simpler subproblems (and aggregating the solutions of these problems later on). Typical examples of this approach include decomposition schemes such as one-vs-rest, all-pairs, and nested dichotomies. While all these techniques produce reductions to purely binary subproblems, which is reasonable when only binary classifiers ought to be used, we argue that reductions to other multi-class problems can be interesting, too. In this paper, we examine a new type of (meta-)classifier called reduction stump. A reduction stump creates a binary split among the given classes, thereby creating two subproblems, each of which is solved by a multi-class classifier in turn. On top, the two groups of classes are separated by a binary (or multi-class) classifier. In addition to simple reduction stumps, we consider ensembles of such models. Empirically, we show that this kind of reduction, in spite of its simplicity, can often lead to significant performance gains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If the split separates a single class from the rest, then we even have only \(m^2\) many combinations.
- 2.
References
Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Dong, Lin, Frank, Eibe, Kramer, Stefan: Ensembles of balanced nested dichotomies for multi-class problems. In: Jorge, Alípio Mário, Torgo, Luís, Brazdil, Pavel, Camacho, Rui, Gama, João (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 84–95. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_13
Duarte-Villaseñor, Miriam Mónica, Carrasco-Ochoa, Jesús Ariel, Martínez-Trinidad, José Francisco, Flores-Garrido, Marisol: Nested dichotomies based on clustering. In: Alvarez, Luis, Mejail, Marta, Gomez, Luis, Jacobo, Julio (eds.) CIARP 2012. LNCS, vol. 7441, pp. 162–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_20
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2962–2970 (2015)
Frank, E., Kramer, S.: Ensembles of nested dichotomies for multi-class problems. In: Proceedings ICML, 21st International Conference on Machine Learning. Banff, Alberta, Canada (2004)
Fürnkranz, J.: Round robin classification. J. Mach. Learn. Res. 2, 721–747 (2002). http://www.jmlr.org/papers/v2/fuernkranz02a.html
Kajdanowicz, T., Kazienko, P.: Multi-label classification using error correcting output codes. Appl. Math. Comput. Sci. 22(4), 829–840 (2012). http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
Leathart, Tim, Pfahringer, Bernhard, Frank, Eibe: Building Ensembles of adaptive nested dichotomies with random-pair selection. In: Frasconi, Paolo, Landwehr, Niels, Manco, Giuseppe, Vreeken, Jilles (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 179–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_12
Melnikov, V., Hüllermeier, E.: On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Mach. Learn. 107(8), 1537–1560 (2018)
Mohr, F., Wever, M., Hüllermeier, E.: Ml-Plan: automated machine learning via hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018)
Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimization tool for automating machine learning. In: Proceedings of the 2016 Workshop on Automatic Machine Learning, AutoML 2016, Co-located with 33rd International Conference on Machine Learning (ICML 2016), New York City, NY, USA, 24 June 2016, pp. 66–74 (2016)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 847–855 (2013)
Wever, M., Mohr, F., Hüllermeier, E.: Ensembles of evolved nested dichotomies. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Germany, 15–19 July 2018 (2018)
Acknowledgements
This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Mohr, F., Wever, M., Hüllermeier, E. (2018). Reduction Stumps for Multi-class Classification. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds) Advances in Intelligent Data Analysis XVII. IDA 2018. Lecture Notes in Computer Science(), vol 11191. Springer, Cham. https://doi.org/10.1007/978-3-030-01768-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-01768-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01767-5
Online ISBN: 978-3-030-01768-2
eBook Packages: Computer ScienceComputer Science (R0)