[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Extended Common Spatial Pattern Framework for EEG-Based Emotion Classification

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

Abstract

A major challenge for emotion classification using electroencephalography (EEG) is how to effectively extract more discriminative feature and reduce the day-to-day variability in raw EEG data. This study proposed a novel spatial filtering algorithm called Ext-CSP which combined common spatial patterns (CSP) and the regularization term into a unified optimization framework based on Kullback-Leibler (KL) divergence. The experiment was carried out on a five-day Music Emotion EEG dataset of 12 subjects. Four classifiers were applied to make emotion classification. The experiment results demonstrated our unified Ext-CSP algorithm could effectively increase the robustness and generalizability of the extracted EEG features and gain 14% better performance than traditional PCA algorithm, and 1.7% better performance than the stepwise DSA-CSP iteration algorithm on EEG-based emotion classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  2. Liu, Y.H., Wu, C.T., Kao, Y.H., Chen, Y.T.: Single-trial EEG based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4306–4309 (2013)

    Google Scholar 

  3. Lin, Y.P., Yang, Y.H., Jung, T.P.: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening. Front. Neurosci. 8, 94 (2014)

    Google Scholar 

  4. Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on the margin theory. Appl. Sci. 8(5), 815 (2018)

    Article  Google Scholar 

  5. Jiang, J., Trundle, P., Ren, J.: Medical image analysis with artificial neural networks. Comput. Med. Imag. Graph. 34(8), 617–631 (2010)

    Article  Google Scholar 

  6. Ren, J.: ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl.-Based Syst. 26, 144–153 (2012)

    Article  Google Scholar 

  7. Lin, Y.P., Hsu, S.H., Jung, T.P.: Exploring day-to-day variability in the relations between emotion and EEG signals. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS, vol. 9183, pp. 461–469. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20816-9_44

    Chapter  Google Scholar 

  8. Lin, Y.P., Jung, T.P.: Exploring day-to-day variability in EEG-based emotion classification. In: IEEE International Conference on System, Man, and Cybernetics, SMC, pp. 2226–2229 (2014)

    Google Scholar 

  9. Samek, W., Kawanabe, M., Vidaurre, C.: Group-wise stationary subspace analysis—A novel method for studying non-stationarities. In: Proceedings of 5th International Brain Computer Interface Conference, pp. 16–20. IOPscience, Bristol (2011)

    Google Scholar 

  10. Thomas, K.P.C., Guan, C.T., Lau, V., Prasad, A., Ang, K.K.: Adaptive tracking of discriminative frequency components in EEG for a robust brain computer interface. J. Neural Eng. 8(3), 1–15 (2011)

    Article  Google Scholar 

  11. Sugiyama, M., Krauledat, M., Müller, K.R.: Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. 8, 985–1005 (2007)

    MATH  Google Scholar 

  12. Blankertz, B., Müller, K.R., Krusienski, D.: The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)

    Article  Google Scholar 

  13. Tangermann, M., Müller, K.R., Aertsen, A.: Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)

    Article  Google Scholar 

  14. Lin, Y.P., Yang, Y.H., Jung, T.P.: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening. Front. Neurosci. 1, 88–94 (2014)

    Google Scholar 

  15. Hyvärinen, A.: Survey on independent component analysis. Neural Comput. Surv. 2, 94–128 (1999)

    Google Scholar 

  16. Kawanabe, M., Samek, W., von Bünau, P., Meinecke, F.C.: An information geometrical view of stationary subspace analysis. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning—ICANN 2011. LNCS, vol. 6792, pp. 397–404. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21738-8_51

    Chapter  Google Scholar 

  17. Samek, W., Blythe, D., Müller, K.R., Kawanabe, M.: Robust spatial filtering with beta divergence. In: Proceedings of Advances in Neural Information Processing System, NIPS, vol. 26, pp. 1007–1015 (2013)

    Google Scholar 

  18. Samek, W., Kawanabe, M., Müller, K.R.: Divergence-based framework for common spatial patterns algorithms. IEEE Rev. Biomed. Eng. 7, 50–72 (2014)

    Article  Google Scholar 

  19. Wang, H.: Harmonic mean of Kullback-Leibler divergences for optimizing multi-class EEG spatio-temporal filters. Neural Process. Lett. 36(2), 161–171 (2012)

    Article  Google Scholar 

  20. Von Bünau, P.: Stationary subspace analysis—Towards understanding non-stationary data. Ph.D. dissertation. Department Software Engineering Theoretical Computer Science, Technik University at Berlin, Berlin, Germany (2012)

    Google Scholar 

  21. Plumbley, M.D.: Geometrical methods for non-negative ICA: manifolds, lie groups and toral subalgebras. Neurocomputing 67, 161–197 (2005)

    Article  Google Scholar 

  22. Chuang, S.W., Ko, L.W., Lin, Y.P., Huang, R.S., Jung, T.P., Lin, C.T.: Co-modulatory spectral changes in independent brain processes are correlated with task performance. Neuroimage 62, 1469–1477 (2012)

    Article  Google Scholar 

  23. Scholkopft, B., Mullert, K.R.: Fisher discriminant analysis with kernels. Neural Netw. Signal Process. IX(1), 1 (1999)

    Google Scholar 

  24. Hoffmann, U., Vesin, J.M., Ebrahimi, T., Diserens, K.: An efficient P300-based brain–computer interface for disabled subjects. J. Neurosci. Methods 167, 115–125 (2008)

    Article  Google Scholar 

  25. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  26. Arvaneh, M., Guan, C., Ang, K.K., Quek, C.: EEG data space adaptation to reduce intersession non-stationarity in brain-computer interface. Neural Comput. 25, 2146–2171 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y.J., Gao, S.K., Gao, X.R.: Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 5392–5395 (2005)

    Google Scholar 

  28. Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  29. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2015)

    Article  Google Scholar 

  30. Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X., et al.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxia Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Jiang, D., Zhang, Y. (2018). An Extended Common Spatial Pattern Framework for EEG-Based Emotion Classification. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics