Abstract
A major challenge for emotion classification using electroencephalography (EEG) is how to effectively extract more discriminative feature and reduce the day-to-day variability in raw EEG data. This study proposed a novel spatial filtering algorithm called Ext-CSP which combined common spatial patterns (CSP) and the regularization term into a unified optimization framework based on Kullback-Leibler (KL) divergence. The experiment was carried out on a five-day Music Emotion EEG dataset of 12 subjects. Four classifiers were applied to make emotion classification. The experiment results demonstrated our unified Ext-CSP algorithm could effectively increase the robustness and generalizability of the extracted EEG features and gain 14% better performance than traditional PCA algorithm, and 1.7% better performance than the stepwise DSA-CSP iteration algorithm on EEG-based emotion classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)
Liu, Y.H., Wu, C.T., Kao, Y.H., Chen, Y.T.: Single-trial EEG based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4306–4309 (2013)
Lin, Y.P., Yang, Y.H., Jung, T.P.: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening. Front. Neurosci. 8, 94 (2014)
Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on the margin theory. Appl. Sci. 8(5), 815 (2018)
Jiang, J., Trundle, P., Ren, J.: Medical image analysis with artificial neural networks. Comput. Med. Imag. Graph. 34(8), 617–631 (2010)
Ren, J.: ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl.-Based Syst. 26, 144–153 (2012)
Lin, Y.P., Hsu, S.H., Jung, T.P.: Exploring day-to-day variability in the relations between emotion and EEG signals. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS, vol. 9183, pp. 461–469. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20816-9_44
Lin, Y.P., Jung, T.P.: Exploring day-to-day variability in EEG-based emotion classification. In: IEEE International Conference on System, Man, and Cybernetics, SMC, pp. 2226–2229 (2014)
Samek, W., Kawanabe, M., Vidaurre, C.: Group-wise stationary subspace analysis—A novel method for studying non-stationarities. In: Proceedings of 5th International Brain Computer Interface Conference, pp. 16–20. IOPscience, Bristol (2011)
Thomas, K.P.C., Guan, C.T., Lau, V., Prasad, A., Ang, K.K.: Adaptive tracking of discriminative frequency components in EEG for a robust brain computer interface. J. Neural Eng. 8(3), 1–15 (2011)
Sugiyama, M., Krauledat, M., Müller, K.R.: Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. 8, 985–1005 (2007)
Blankertz, B., Müller, K.R., Krusienski, D.: The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)
Tangermann, M., Müller, K.R., Aertsen, A.: Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)
Lin, Y.P., Yang, Y.H., Jung, T.P.: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening. Front. Neurosci. 1, 88–94 (2014)
Hyvärinen, A.: Survey on independent component analysis. Neural Comput. Surv. 2, 94–128 (1999)
Kawanabe, M., Samek, W., von Bünau, P., Meinecke, F.C.: An information geometrical view of stationary subspace analysis. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning—ICANN 2011. LNCS, vol. 6792, pp. 397–404. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21738-8_51
Samek, W., Blythe, D., Müller, K.R., Kawanabe, M.: Robust spatial filtering with beta divergence. In: Proceedings of Advances in Neural Information Processing System, NIPS, vol. 26, pp. 1007–1015 (2013)
Samek, W., Kawanabe, M., Müller, K.R.: Divergence-based framework for common spatial patterns algorithms. IEEE Rev. Biomed. Eng. 7, 50–72 (2014)
Wang, H.: Harmonic mean of Kullback-Leibler divergences for optimizing multi-class EEG spatio-temporal filters. Neural Process. Lett. 36(2), 161–171 (2012)
Von Bünau, P.: Stationary subspace analysis—Towards understanding non-stationary data. Ph.D. dissertation. Department Software Engineering Theoretical Computer Science, Technik University at Berlin, Berlin, Germany (2012)
Plumbley, M.D.: Geometrical methods for non-negative ICA: manifolds, lie groups and toral subalgebras. Neurocomputing 67, 161–197 (2005)
Chuang, S.W., Ko, L.W., Lin, Y.P., Huang, R.S., Jung, T.P., Lin, C.T.: Co-modulatory spectral changes in independent brain processes are correlated with task performance. Neuroimage 62, 1469–1477 (2012)
Scholkopft, B., Mullert, K.R.: Fisher discriminant analysis with kernels. Neural Netw. Signal Process. IX(1), 1 (1999)
Hoffmann, U., Vesin, J.M., Ebrahimi, T., Diserens, K.: An efficient P300-based brain–computer interface for disabled subjects. J. Neurosci. Methods 167, 115–125 (2008)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Arvaneh, M., Guan, C., Ang, K.K., Quek, C.: EEG data space adaptation to reduce intersession non-stationarity in brain-computer interface. Neural Comput. 25, 2146–2171 (2013)
Wang, Y.J., Gao, S.K., Gao, X.R.: Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 5392–5395 (2005)
Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)
Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2015)
Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X., et al.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, J., Jiang, D., Zhang, Y. (2018). An Extended Common Spatial Pattern Framework for EEG-Based Emotion Classification. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-00563-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00562-7
Online ISBN: 978-3-030-00563-4
eBook Packages: Computer ScienceComputer Science (R0)