[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dominance-Based Rough Set Approach: Basic Ideas and Main Trends

  • Chapter
  • First Online:
Intelligent Decision Support Systems

Part of the book series: Multiple Criteria Decision Making ((MCDM))

Abstract

Dominance-based Rough Set Approach (DRSA) has been proposed as a machine learning and knowledge discovery methodology to handle Multiple Criteria Decision Aiding (MCDA). Due to its capacity of asking the decision maker (DM) for simple preference information and supplying easily understandable and explainable recommendations, DRSA gained much interest during the years and it is now one of the most appreciated MCDA approaches. In fact, it has been applied also beyond MCDA domain, as a general knowledge discovery and data mining methodology for the analysis of monotonic (and also non-monotonic) data. In this contribution, we recall the basic principles and the main concepts of DRSA, with a general overview of its developments and software. We present also a historical reconstruction of the genesis of this methodology, with a specific focus on the contribution of Roman Słowiński.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ruleLearn/rulelearn.

  2. 2.

    https://github.com/dominieq/rule-studio.

  3. 3.

    http://www.cs.put.poznan.pl/mszelag/Software/RuleVisualization/RuleVisualization.html.

  4. 4.

    http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html.

  5. 5.

    http://www.cs.put.poznan.pl/mszelag/Software/ruleRank/ruleRank.html.

References

  1. Błaszczyński J, Greco S, Słowiński R, Szeląg M (2006) On variable consistency dominance-based rough set approaches. In: Greco S, Hata Y, Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Słowiński R (eds) Rough sets and current trends in computing 2006. Lecture notes in artificial intelligence, vol 4259. Springer, Berlin, Heidelberg, pp 191–202

    Google Scholar 

  2. Błaszczyński J, Greco S, Słowiński R (2007) Multi-criteria classification – a new scheme for application of dominance-based decision rules. Eur J Oper Res 181(3):1030–1044

    Article  Google Scholar 

  3. Błaszczyński J, Greco S, Słowiński R, Szeląg M (2007) Monotonic variable consistency rough set approaches. In: Yao J, Lingras P, Wu W, Szczuka M, Cercone NJ, Ślezak D (eds) Rough sets and knowledge technology 2007. Lecture notes in artificial intelligence, vol 4481. Springer, New York, pp 126–133

    Google Scholar 

  4. Błaszczyński J, Greco S, Słowiński R, Szeląg M (2009) Monotonic variable consistency rough set approaches. Int J Approx Reason 50(7):979–999.

    Google Scholar 

  5. Błaszczyński J, Słowiński R, Szeląg M (2011) Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf Sci 181:987–1002.

    Google Scholar 

  6. Błaszczyński J, Greco S, Słowiński R (2012) Inductive discovery of laws using monotonic rules. Eng Appl Artif Intell 25:284–294.

    Article  Google Scholar 

  7. Błaszczyński J, Słowiński R, Szeląg M (2012) Induction of ordinal classification rules from incomplete data. In: Yao J, et al (eds) Rough sets and current trends in computing 2012. LNAI, vol 7413. Springer, New York, pp 56–65

    Google Scholar 

  8. Błaszczyński J, Greco S, Matarazzo B, Słowiński R, Szeląg M (2013) jMAF – Dominance-based Rough Set Data Analysis Framework. In: Skowron A, Suraj Z (eds) Rough sets and intelligent systems – Professor Zdzisław Pawlak in memoriam: Volume 1, Intelligent systems reference library, vol 42. Springer, New York, pp 185–209

    Google Scholar 

  9. Bouyssou D (1992) Ranking methods based on valued preference relations: a characterization of the net flow method. Eur J Oper Res 60:61–67

    Article  Google Scholar 

  10. Bouyssou D, Vincke P (1997) Ranking alternatives on the basis of preference relations: a progress report with special emphasis on outranking relations. J Multi-Crit Decis Anal 6:77–85

    Article  Google Scholar 

  11. Branke J, Deb K, Miettinen K, Słowiński R (eds) (2008) Multiobjective optimization: interactive and evolutionary approaches, vol 5252. Springer Science & Business Media, Berlin

    Google Scholar 

  12. Corrente S, Greco S, Matarazzo B, Słowiński R (2021) Explainable interactive evolutionary multiobjective optimization. Available at SSRN 3792994

    Google Scholar 

  13. Dembczyński K, Greco S, Słowiński R (2002) Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria. Control Cybernet 31:891–920

    Google Scholar 

  14. Dembczyński K, Greco S, Słowiński R (2003) Dominance-based rough set approach to multicriteria classification with interval evaluations and assignments. In: Proceedings of the third international conference on decision support for telecommunications and information society, Warsaw, pp 73–84

    Google Scholar 

  15. Dembczyński K, Greco S, Słowiński R (2005) Second-order rough approximations in multi-criteria classification with imprecise evaluations and assignments. In: Ślezak D, Wang G, Szczuka M, Düntsch I, Yao Y (eds) Rough sets, fuzzy sets, data mining, and granular computing. Lecture notes in artificial intelligence, vol 3641. Springer, New York, pp 54–63

    Chapter  Google Scholar 

  16. Dembczyński K, Greco S, Słowiński R (2009) Rough set approach to multiple criteria classification with imprecise evaluations and assignments. Eur J Oper Res 198(2):626–636

    Article  Google Scholar 

  17. Dimitras AI, Słowiński R, Susmaga R, Zopounidis C (1999) Business failure prediction using rough sets. Eur J Oper Res 114(2):263–280

    Article  Google Scholar 

  18. Du WS, Hu BQ (2016) Dominance-based rough set approach to incomplete ordered information systems. Inf Sci 346–347:106–129

    Article  Google Scholar 

  19. Dubois D, Prade H, Esteva F, Garcia P, Godo L, Lopez de Mantaras R (1998) Fuzzy set modelling in case-based reasoning. Int J Intell Syst 13:345–373

    Article  Google Scholar 

  20. Dziecioł T, Szmyt D, Zimny M (2020) Platform for multi-criteria classification support based on decision-rule preference model. B. Sc. thesis, Poznan University of Technology, supervisor: Marcin Szeląg

    Google Scholar 

  21. Fandel G, Gál T, Hanne T (eds) (1997) Multiple criteria decision making. Springer, New York

    Google Scholar 

  22. Fortemps P, Greco S, Słowiński R (2008) Multicriteria decision support using rules that represent rough-graded preference relations. Eur J Oper Res 188(1):206–223

    Article  Google Scholar 

  23. Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13:3–54

    Article  Google Scholar 

  24. Fürnkranz J, Hüllermeier E (eds) (2010) Preference learning. Springer, Berlin

    Google Scholar 

  25. Gal T, Stewart T, Hanne T (eds) (2013) Multicriteria decision making: advances in MCDM models, algorithms, theory, and applications, vol 21. Springer Science & Business Media, Berlin

    Google Scholar 

  26. Greco S, Matarazzo B, Słowiński R (1995) Rough set approach to multi-attribute choice and ranking problems. ICS Research Report 38/95, ICS, Warsaw University of Technology

    Google Scholar 

  27. Greco S, Matarazzo B, Słowiński R (1996) Rough approximation of a preference relation by dominance relations. In: Tsumoto S, Kobayashi S, Yokomori T, Tanaka H, Nakamura A (eds) Proceedings of the fourth international workshop on rough sets, fuzzy sets and machine discovery (RSFD’96). Tokyo University Press, Tokyo, pp 125–130

    Google Scholar 

  28. Greco S, Matarazzo B, Słowiński R (1996) Rough approximation of preference relation by dominance relations. ICS Research Report 16/96, Warsaw University of Technology, Warsaw

    Google Scholar 

  29. Greco S, Matarazzo B, Słowiński R (1997) Rough set approach to multi-attribute choice and ranking problems. In: Fandel G, Gal T (eds) Multiple criteria decision making. Proceedings of the twelfth international conference on multiple criteria decision making, June 19–23, 1995, Hagen. Springer, New York, pp 318–329

    Google Scholar 

  30. Greco S, Matarazzo B, Słowiński R (1998) Rough approximation of a preference relation in a pairwise comparison table. In: Lech P, et al (eds) Rough sets in knowledge discovery, vol 2, chap 2. Springer, Berlin, Heidelberg, pp 13–36

    Chapter  Google Scholar 

  31. Greco S, Matarazzo B, Słowiński R, Tsoukiàs A (1998) Exploitation of a rough approximation of the outranking relation in multicriteria choice and ranking. In: Stewart TJ, van den Honert RC (eds) Trends in multicriteria decision making. Lecture notes in economics and mathematical systems, vol 465. Springer, Berlin, pp 45–60

    Chapter  Google Scholar 

  32. Greco S, Matarazzo B, Słowiński R (1999) Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Rough sets, fuzzy sets, data mining, and granular computing, pp 146–157

    Google Scholar 

  33. Greco S, Matarazzo B, Słowiński R (1999) Rough approximation of a preference relation by dominance relations. Eur J Oper Res 117:63–83

    Article  Google Scholar 

  34. Greco S, Matarazzo B, Słowiński R (1999) The use of rough sets and fuzzy sets in MCDM. In: Gal T, Stewart T, Hanne T (eds) Multicriteria decision making: advances in MCDM models, algorithms, theory, and applications. Springer, New York, pp 397–455

    Chapter  Google Scholar 

  35. Greco S, Matarazzo B, Słowiński R (2000) Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zanakis S, Doukidis G, Zopounidis C (eds) Decision making: recent developments and worldwide applications. Kluwer, Dordrecht, pp 295–316

    Chapter  Google Scholar 

  36. Greco S, Matarazzo B, Słowiński R (2000) Extension of the rough set approach to multicriteria decision support. INFOR: Inf Syst Oper Res 38(3):161–195

    Google Scholar 

  37. Greco S, Matarazzo B, Słowiński R, Stefanowski J (2000) An algorithm for induction of decision rules consistent with the dominance principle. In: Ziarko W, Yao YY (eds) Rough sets and current trends in computing. Lecture notes in computer science, vol 2005. Springer, New York, pp 304–313

    Chapter  Google Scholar 

  38. Greco S, Matarazzo B, Słowiński R, Stefanowski J (2000) Variable consistency model of dominance-based rough sets approach. In: Rough sets and current trends in computing, pp 170–181

    Google Scholar 

  39. Greco S, Matarazzo B, Słowiński R (2001) Rough set approach to decisions under risk. In: Ziarko W, YYao (eds) Rough sets and current trends in computing. Springer, Berlin, pp 160–169

    Chapter  Google Scholar 

  40. Greco S, Matarazzo B, Słowiński R (2001) Rough sets theory for multicriteria decision analysis. Eur J Oper Res 129(1):1–47

    Article  Google Scholar 

  41. Greco S, Słowiński R, Stefanowski J (2002) Mining association rules in preference-ordered data. In: International symposium on methodologies for intelligent systems. Springer, New York, pp 442–450

    Google Scholar 

  42. Greco S, Matarazzo B, Słowiński R (2005) Decision rule approach. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys, international series in operations research & management science, vol 78. Springer, New York, pp 507–561

    Google Scholar 

  43. Greco S, Matarazzo B, Słowiński R (2006) Dominance-based rough set approach to case-based reasoning. In: Torra V, Narukawa Y, Valls A, Domingo-Ferrer J (eds) Modelling decisions for artificial intelligence. Lecture notes in artificial intelligence, vol 3885. Springer, Berlin, Heidelberg, pp 7–18

    Chapter  Google Scholar 

  44. Greco S, Słowiński R, Yao Y (2007) Bayesian decision theory for dominance-based rough set approach. In: Yao J, Lingras P, Wu W, Szczuka M, Cercone NJ, Ślezak D (eds) RSKT 2007, LNAI 4481. Springer, Berlin, Heidelberg, pp 131–141

    Google Scholar 

  45. Greco S, Matarazzo B, Słowiński R (2008) Case-based reasoning using gradual rules induced from dominance-based rough approximations. In: Wang G, Li T, Grzymała-Busse JW, Miao D, Skowron A, Yao YY (eds) Rough sets and knowledge technology (RSKT 2008). Lecture notes in artificial intelligence, vol 5009. Springer, Berlin, pp 268–275

    Chapter  Google Scholar 

  46. Greco S, Matarazzo B, Słowiński R (2008) Dominance-based rough set approach to interactive multiobjective optimization. In: Branke J, Deb K, Miettinen K, Słowiński R (eds) Multiobjective optimization. Springer, New York, pp 121–155

    Chapter  Google Scholar 

  47. Greco S, Matarazzo B, Słowiński R (2008) Granular computing for reasoning about ordered data: the dominance-based rough set approach. In: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of granular computing, chap 15. John Wiley and Sons, Chichester, pp 347–373

    Chapter  Google Scholar 

  48. Greco S, Ehrgott M, Figueira JR (eds) (2016) Multiple criteria decision analysis: state of the art surveys. Springer Science+Business Media, Inc, New York

    Google Scholar 

  49. Grzymała-Busse JW (1992) LERS - a system for learning from examples based on rough sets. In: Słowiński R (ed) Intelligent decision support: Handbook of applications and advances of the rough sets theory. Kluwer Academic Publishers, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  50. Grzymała-Busse JW (2004) Data with missing attribute values: generalization of indiscernibility relation and rule induction. In: Peters JF, Skowron A, Grzymała-Busse JW, Kostek B, Świniarski RW, Szczuka MS (eds) Transactions on rough sets I. Springer, Berlin, Heidelberg, pp 78–95

    Chapter  Google Scholar 

  51. Grzymała-Busse JW (2005) Characteristic relations for incomplete data: a generalization of the indiscernibility relation. In: Peters JF, Skowron A (eds) Transactions on rough sets IV. Springer, Berlin, Heidelberg, pp 58–68

    Chapter  Google Scholar 

  52. Grzymała-Busse JW (2011) Mining incomplete data – a rough set approach. In: Yao J, Ramanna S, Wang G, Suraj Z (eds) Rough sets and knowledge technology. Springer, Berlin, Heidelberg, pp 1–7

    Google Scholar 

  53. Grzymała-Busse JW, Hu M (2001) A comparison of several approaches to missing attribute values in data mining. In: Ziarko W, Yao Y (eds) Rough sets and current trends in computing. Springer, Berlin, Heidelberg, pp 378–385

    Chapter  Google Scholar 

  54. Han J, Kamber M (2006) Data mining: concepts and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

  55. Hu ML, Liu SF (2007) A rough analysis method of multi-attribute decision making for handling decision system with incomplete information. In: Proceedings of 2007 IEEE international conference on grey systems and intelligent services, November 18–20, 2007, Nanjing

    Google Scholar 

  56. Inuiguchi M, Yoshioka Y (2006) Variable-precision dominance-based rough set approach. In: Greco S, Hata Y, Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Slowinski R (eds) Rough sets and current trends in computing. Lecture notes in computer science, vol 4259. Springer, New York, pp 203–212

    Chapter  Google Scholar 

  57. Jówko P (2018) Multicriteria ranking decision support system based on decision rules induced from decision examples. M. Sc. thesis, Poznan University of Technology, supervisor: Marcin Szeląg

    Google Scholar 

  58. Keeney R, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. John Wiley & Sons, New York, NY

    Google Scholar 

  59. Kolodner J (1993) Case-based reasoning. Morgan Kaufmann, San Mateo

    Book  Google Scholar 

  60. Kotłowski W (2009) Statistical approach to ordinal classification with monotonicity constraints. PhD thesis, Poznań University of Technology

    Google Scholar 

  61. Kotłowski W, Słowiński R (2008) Statistical approach to ordinal classification with monotonicity constraints. In: Preference learning ECML/PKDD 2008 workshop

    Google Scholar 

  62. Kusunoki Y, Błaszczyński J, Inuiguchi M, Słowiński R (2021) Empirical risk minimization for dominance-based rough set approaches. Inf Sci 567:395–417.

    Article  Google Scholar 

  63. Lewandowski M (2019) System for visualization and exploration of monotonous decision rules. M. Sc. thesis, Poznan University of Technology, supervisor: Marcin Szeląg

    Google Scholar 

  64. Liang D, Yang SX, Jiang C, Zheng X, Liu D (2010) A new extended dominance relation approach based on probabilistic rough set theory. In: Yu J, et al (eds) RSKT 2010. LNAI, vol 6401. Springer, New York, pp 175–180

    Google Scholar 

  65. Lichtenstein S, Slovic P (eds) (2006) The construction of preference. Cambridge University Press, Cambridge

    Google Scholar 

  66. Liu D, Liang D (2017) Three-way decisions in ordered decision system. Knowl-Based Syst 137:182–195

    Article  Google Scholar 

  67. Michalski RS (1969) On the quasi-minimal solution of the covering problem. In: Proceedings of the 5th international symposium on information processing (FCIP-69), Bled, Yugoslavia, vol A3 (Switching Circuits), pp 125–128

    Google Scholar 

  68. Pagallo G, Haussler D (1990) Boolean feature discovery in empirical learning. Mach Learn 5(1):71–99

    Article  Google Scholar 

  69. Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11:341–356

    Article  Google Scholar 

  70. Pawlak Z (1991) Rough sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishing, Dordrecht

    Google Scholar 

  71. Pawlak Z, Słowiński R (1994) Decision analysis using rough sets. Int Trans Oper Res 1(1):107–114

    Article  Google Scholar 

  72. Pawlak Z, Słowiński R (1994) Rough set approach to multi-attribute decision analysis. Eur J Oper Res 72(3):443–459

    Article  Google Scholar 

  73. Roy B (1985) Méthodologie multicritère d’aide à la décision. Economica, Paris

    Google Scholar 

  74. Roy B (1990) Wielokryterialne wspomaganie decyzji. Wydawnictwa Naukowo-Techniczne, translation into Polish by Roman Słowiński

    Google Scholar 

  75. Roy B (1991) The outranking approach and the foundations of ELECTRE methods. Theor Decis 31:49–73

    Article  Google Scholar 

  76. Roy B, Bouyssou D (1993) Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris

    Google Scholar 

  77. Roy B, Vincke P (1984) Relational systems of preference with one or more pseudo-criteria: some new concepts and results. Manage Sci 30(11):1323–1335

    Article  Google Scholar 

  78. Słowiński R (1992) A generalization of the indiscernibility relation for rough set analysis of quantitative information. Rivista di matematica per le scienze economiche e sociali 15(1):65–78

    Google Scholar 

  79. Słowiński R (ed) (1992) Intelligent decision support: handbook of applications and advances of the rough sets theory, vol 11. Springer, New York

    Google Scholar 

  80. Słowiński R, Stefanowski J (1993) Special issue on Rough Sets – state of the art and perspectives. Found Comput Decis Sci 18(3–4):155–396

    Google Scholar 

  81. Słowiński R, Vanderpooten D (2000) A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12(2):331–336

    Article  Google Scholar 

  82. Słowiński K, Słowiński R, Stefanowski J (1988) Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis. Med Inf 13(3):143–159

    Google Scholar 

  83. Słowiński R, Greco S, Matarazzo B (2002) Mining decision-rule preference model from rough approximation of preference relation. In: Proceedings of the 26th IEEE annual international conference on computer software and applications (COMPSAC 2002). IEEE Computer Society Press, Los Alamitos, CA, pp 1129–1134

    Google Scholar 

  84. Słowiński R, Greco S, Matarazzo B (2005) Rough set based decision support. In: Burke EK, Kendall G (eds) Search methodologies: introductory tutorials in optimization and decision support techniques, chap 16. Springer, New York, pp 475–527

    Chapter  Google Scholar 

  85. Słowiński R, Greco S, Matarazzo B (2009) Rough sets in decision making. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 7753–7786

    Chapter  Google Scholar 

  86. Słowiński R, Greco S, Matarazzo B (2014) Rough set based decision support. In: Burke EK, Kendall G (eds) Search methodologies: introductory tutorials in optimization and decision support techniques, 2nd edn, chap 19. Springer, New York, pp 557–609

    Chapter  Google Scholar 

  87. Słowiński R, Greco S, Matarazzo B (2015) Rough set methodology for decision aiding. In: Kacprzyk J, Pedrycz W (eds) Springer handbook of computational intelligence. Springer, New York, pp 349–370

    Chapter  Google Scholar 

  88. Stefanowski J, Tsoukias A (2001) Incomplete information tables and rough classification. Comput Intell 17(3):545–566

    Article  Google Scholar 

  89. Szeląg M (2015) Application of the dominance-based rough set approach to ranking and similarity-based classification problems. PhD thesis, Poznań University of Technology, http://www.cs.put.poznan.pl/mszelag/Research/MSzPhD.pdf, supervisor: prof. R. Słowiński

  90. Szeląg M, Greco S, Błaszczyński J, Słowiński R (2011) Case-based reasoning using dominance-based decision rules. In: Yao J, Ramanna S, Wang G, Suraj Z (eds) Rough sets and knowledge technology 2011. Lecture notes in computer science, vol 6954. Springer, Heidelberg, pp 404–413

    Google Scholar 

  91. Szeląg M, Greco S, Słowiński R (2013) Rule-based approach to multicriteria ranking. In: Doumpos M, Grigoroudis E (eds) Multicriteria decision aid and artificial intelligence: links, theory and applications. Wiley, Chichester, pp 127–160

    Google Scholar 

  92. Szeląg M, Greco S, Słowiński R (2014) Variable consistency dominance-based rough set approach to preference learning in multicriteria ranking. Inf Sci 277:525–552

    Google Scholar 

  93. Szeląg M, Greco S, Słowiński R (2016) Similarity-based classification with dominance-based decision rules. In: Flores V, et al (eds) Rough sets, international joint conference, IJCRS 2016. Santiago de Chile, October 7–11, 2016, proceedings. Lecture notes in artificial intelligence. Springer, New York, pp 355–364

    Google Scholar 

  94. Szeląg M, Błaszczyński J, Słowiński R (2017) Rough set analysis of classification data with missing values. In: Polkowski L, et al (eds) Rough sets, international joint conference, IJCRS 2017, Olsztyn, July 3–7, 2017, proceedings, Part I. LNAI, vol 10313. Springer, New York, pp 552–565

    Google Scholar 

  95. Tsoukias A, Vincke P (1995) A new axiomatic foundation of partial comparability. Theor Decis 39:79–114

    Article  Google Scholar 

  96. Tsoukias A, Vincke P (1997) Extended preference structures in MCDA. In: Climaco J (ed) Multicriteria analysis. Springer, Berlin, pp 37–50

    Chapter  Google Scholar 

  97. Yang X, Yang J, Wu C, Yu D (2008) Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Inf Sci 178(4):1219–1234

    Article  Google Scholar 

  98. Yang X, Yu D, Yang J, Wei L (2009) Dominance-based rough set approach to incomplete interval-valued information system. Data Knowl Eng 68(11):1331–1347

    Article  Google Scholar 

  99. Yao Y (2008) Probabilistic rough set approximations. Int J Approx Reason 49:255–271

    Article  Google Scholar 

  100. Yao Y, Zhou B (2016) Two Bayesian approaches to rough sets. Eur J Oper Res 251(3):904–917

    Article  Google Scholar 

  101. Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  102. Zopounidis C (1998) Operational tools in the management of financial risks. Springer Science & Business Media, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No. 952215. Salvatore Greco wishes to acknowledge the support of the Ministero dell’Istruzione, dell’Universitá e della Ricerca (MIUR)—PRIN 2017, project “Multiple Criteria Decision Analysis and Multiple Criteria Decision Theory,” grant 2017CY2NCA and the research project “Data analytics for entrepreneurial ecosystems, sustainable development and well being indices” of the Department of Economics and Business of the University of Catania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Błaszczyński, J., Greco, S., Matarazzo, B., Szeląg, M. (2022). Dominance-Based Rough Set Approach: Basic Ideas and Main Trends. In: Greco, S., Mousseau, V., Stefanowski, J., Zopounidis, C. (eds) Intelligent Decision Support Systems . Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-030-96318-7_18

Download citation

Publish with us

Policies and ethics