Abstract
After a brief historical review of unstructured grid generation methods the two ‘breakthrough workarounds’ that made these methods reliable industrial tools are discussed. In many previous publications these important ‘workarounds’ were never mentioned. Yet without them computational science would not have become the third pillar of the empirical sciences (besides theory and experiments).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arcilla, A.S., Häuser, J., Eiseman, P.R., Thompson, J.F. (eds.): Proc. 3rd Int. Conf. Numerical Grid Generation in Computational Fluid Dynamics and Related Fields. North-Holland (1991)
Aubry, R., Löhner, R.: Generation of viscous grids at ridges and corners. Int. J. Numer. Methods Eng. 77, 1247–1289 (2009)
Baker, T.J.: Three-Dimensional Mesh Generation by Triangulation of Arbitrary Point Sets. AIAA-CP-87-1124, 8th CFD Conf., Hawaii (1987)
Baker, T.J.: Developments and trends in three-dimensional mesh generation. Appl. Numer. Mathods 5, 275–304 (1989)
Boender, E.: Reliable Delaunay-based mesh generation and mesh improvement. Commun. Appl. Numer. Methods Eng. 10, 773–783 (1994)
Bowyer, A.: Computing Dirichlet tesselations. Comput. J. 24(2), 162–167 (1981)
Carey, G.F.: Grid Generation, Refinement, and Redistribution. Wiley, London (1993)
Carey, G.F.: Computational Grids: Generation, Adaption, and Solution. Taylor & Francis, London (1997)
Cavendish, J.C.: Automatic triangulation of arbitrary planar domains for the finite element method. Int. J. Numer. Methods Eng. 8, 679–696 (1974)
Cavendish, J.C., Field, D.A., Frey, W.H.: An approach to automatic three-dimensional finite element generation. Int. J. Numer. Methods Eng. 21, 329–347 (1985)
Chen, J., Zheng, J., Zheng, Y., Si, H., Hassan, O., Morgan, K.: Improved boundary constrained tetrahedral mesh generation by mesh transformation. Appl. Math. Model. 51, 764–790 (2017)
Choi, B.K., Chin, H.Y., Loon, Y.I., Lee, J.W.: Triangulation of scattered data in 3D space. Comput. Aided Geom. Design 20, 239–248 (1988)
Frey, W.H.: Selective refinement: a new strategy for automatic node placement in graded triangular meshes. Int. J. Numer. Methods Eng. 24, 2183–2200 (1987)
Frey, P.J., George, P.L.: Mesh Generation Application to Finite Elements. Hermes Science Publishing, Oxford, Paris (2000)
Frykestig, J.: Advancing Front Mesh Generation Techniques with Application to the Finite Element Method. Pub. 94:10, Chalmers University of Technology, Göteborg, Sweden (1994)
Fuchs, A.: Automatic grid generation with almost regular Delaunay tetrahedra. In: Proc. 7th Int. Meshing Roundtable, pp. 133–148 (1998)
George, P.L., Hecht, F., Saltel, E.: Fully automatic mesh generation for 3D domains of any shape. Impact Comput. Sci. Eng. 2(3), 187–218 (1990)
George, P.L.: Automatic Mesh Generation. Wiley, London (1991)
George, P.L., Hecht, F., Saltel, E.: Automatic mesh generator with specified boundary. Comput. Methods Appl. Mech. Eng. 92, 269–288 (1991)
George, P.L., Hermeline, F.: Delaunay’s mesh of a convex polyhedron in dimension d. Application to arbitrary Polyhedra. Int. J. Numer. Methods Eng. 33, 975–995 (1992)
George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing. Editions Hermes, Paris (1998)
Hassan, O., Probert, E.J., Morgan, K., Peraire, J.: Mesh generation and adaptivity for the solution of compressible viscous high speed flows. Int. J. Numer. Methods. Eng. 38(7), 1123–1148 (1995)
Hassan, O., Morgan, K., Probert, E.J., Peraire, J.: Unstructured tetrahedral mesh generation for three-dimensional viscous flows. Int. J. Numer. Methods Eng. 39(4), 549–567 (1996)
Holmes, D.G., Lamson, S.C.: Compressible flow solutions on adaptive triangular meshes. In: Open Forum AIAA- Reno’86—Meeting (1986)
Holmes, D.G., Snyder, D.D.: The generation of unstructured triangular meshes using Delaunay triangulation. In: Sengupta et al. (eds.), Numerical Grid Generation in Computational Fluid Dynamics, pp. 643–652. Pineridge Press, Swansea, Wales (1988)
Huet, F.: Generation de Maillage Automatique dans les Configurations Tridimensionelles Complexes Utilization d’une Methode de ‘Front’; AGARD-CP-464, 17 (1990)
Jin, H., Tanner, R.I.: Generation of unstructured tetrahedral meshes by the advancing front technique. Int. J. Numer. Methods Eng. 36, 1805–1823 (1993)
Joe, B.: Construction of three-dimensional Delaunay triangulations using local transformations. Comput. Aided Geom. Design 8, 123–142 (1991)
Joe, B.: Delaunay versus max-min solid angle triangulations for three-dimensional mesh generation. Int. J. Numer. Methods Eng. 31, 987–997 (1991)
Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sc. 9(3), 219–242 (1980)
Lo, S.H.: A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Methods Eng. 21, 1403–1426 (1985)
Lo, S.H.: Finite element mesh generation over curved surfaces. Comput. Struct. 29, 731–742 (1988)
Löhner, R., Parikh, P.: Three-dimensional grid generation by the advancing front method. Int. J. Numer. Methods Fluids 8, 1135–1149 (1988)
Löhner, R.: Three-dimensional fluid-structure interaction using a finite element solver and adaptive remeshing. Comput. Syst. Eng. 1(2–4), 257–272 (1990)
Löhner, R., Baum, J.D.: Adaptive H-refinement on 3-D unstructured grids for transient problems. Int. J. Numer. Methods Fluids 14, 1407–1419 (1992)
Löhner, R., Camberos, J., Merriam, M.: Parallel unstructured grid generation. Comput. Methods Appl. Mech. Eng. 95, 343–357 (1992)
Löhner, R.: Automatic unstructured grid generators. Finite Elements Anal. Design 25, 111–134 (1997)
Löhner, R., Oñate, E.: An advancing front technique for filling space with arbitrary objects. Int. J. Numer. Methods Eng. 78, 1618–1630 (2009)
Löhner, R., Oñate, E.: Advancing front techniques for filling space with arbitrary separated objects. Finite Elements Anal. Design 46, 140–151 (2010)
Marcum, D.L., Weatherill, N.P.: Unstructured grid generation using iterative point insertion and local reconnection. AIAA J. 33(9), 1619–1625 (1995)
Mavriplis, D.J.: An advancing front Delaunay triangulation algorithm designed for robustness. In: AIAA-93-0671 (1993)
Merriam, M.: An efficient advancing front algorithm for Delaunay triangulation. In: AIAA-91-0792 (1991)
Merriam, M., Barth, T.: 3D CFD in a day: the laser digitizer project. In: AIAA-91-1654 (1991)
Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comput. Phys. 72, 449–466 (1987)
Peraire, J., Peiro, J., Formaggia, L., Morgan, K., Zienkiewicz, O.C.: Finite element Euler calculations in three dimensions. Int. J. Numer. Methods Eng. 26, 2135–2159 (1988)
Peraire, J., Morgan, K., Peiro, J.: Unstructured finite element mesh generation and adaptive procedures for CFD. In: AGARD-CP-464, 18 (1990)
Peraire, J., Peiro, J., Morgan, K.: Adaptive remeshing for three-dimensional compressible flow computations. J. Comput. Phys. 103, 269–285 (1992)
Rebay, S.: Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm. J. Comput. Phys. 106(1), 125–138 (1993)
Sandia National Laboratories: Proc. International Meshing Roundtable (1992–Present)
Sengupta, S., Häuser, J., Eiseman, P.R., Thompson, J.F. (eds.): Proc. 2nd Int. Conf. Numerical Grid Generation in Computational Fluid Dynamics. Pineridge Press, Swansea, Wales (1988)
Shenton, D.N., Cendes, Z.J.: Three-dimensional finite element mesh generation using Delaunay tesselation. In: IEEE Trans. on Magnetics, MAG-21, pp. 2535–2538 (1985)
Shepard, M.S., Georges, M.K.: Automatic three-dimensional mesh generation by the finite octree technique. Int. J. Numer. Methods Eng. 32, 709–749 (1991)
Sloan, S.W., Houlsby, G.T.: An implementation of Watson’s algorithm for computing 2-dimensional Delaunay triangulations. Adv. Eng. Softw. 6(4), 192–197 (1984)
Tanemura, M., Ogawa, T., Ogita, N.: A new algorithm for three-dimensional Voronoi tesselation. J. Comput. Phys. 51, 191–207 (1983)
van Phai, N.: Automatic mesh generation with tetrahedron elements. Int. J. Numer. Methods Eng. 18, 237–289 (1982)
Walton, S., Hassan, O., Morgan, K.: Advances in co-volume mesh Gneration and mesh optimization techniques. Comput. Struct. 181, 70–88 (2017)
Wang, D., Hassan, O., Morgan, K., Weatherill, N.: Enhanced remeshing from STL files with applications to surface grid generation. Commun. Numer. Methods Eng. 23(3), 227–139 (2007)
Watson, D.F.: Computing the N-dimensional Delaunay tesselation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)
Weatherill, N.P.: Delaunay triangulation in computational fluid dynamics. Comput. Mathods Appl. 24(5/6), 129–150 (1992)
Weatherill, N.P., Hassan, O., Marchant, M.J., Marcum, D.L.: Adaptive inviscid flow solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes. In: AIAA-93-3390 (1993)
Weatherill, N.P., Eiseman, P.R., Häuser, J., Thompson, J.F. (eds.): Proc. 4th Int. Conf. Numerical Grid Generation in Computational Fluid Dynamics and Related Fields. Pineridge Press, Swansea, Wales (1993)
Weatherill, N.P., Hassan, O.: Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int. J. Numer. Methods Eng. 37, 2005–2039 (1994)
Xie, Z.Q., Hassan, O., Morgan, K.: Tayloring unstructured meshes for use with a 3-D time domain co-volume algorithm in computational electromagnetics. Int. J. Numer. Methods Eng. 87, 48–65 (2011)
Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3D finite element analysis. Comput. Mech. 51, 361–374 (2013)
Yerry, M.A., Shepard, M.S.: Automatic three-dimensional mesh generation by the modified-octree technique. Int. J. Numer. Methods Eng. 20, 1965–1990 (1984)
Acknowledgements
It is a great pleasure to acknowledge insightful discussions with Oubey Hassan on a whole range of topics in computational mechanics. He has distinguished himself in an astounding number of fields, among them grid generation, flow and electromagnetic solvers, parallel computing, visualization, optimization and control, and has contributed in each of these in a significant way.
The collaboration with SLRasch, Stuttgart for the toldo case and ASI Inc., Potomac, MD, for the pellet ignition simulation is greatfully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Löhner, R. (2022). Breakthrough ‘Workarounds’ in Unstructured Mesh Generation. In: Sevilla, R., Perotto, S., Morgan, K. (eds) Mesh Generation and Adaptation. SEMA SIMAI Springer Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-92540-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-92540-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92539-0
Online ISBN: 978-3-030-92540-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)