[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Breakthrough ‘Workarounds’ in Unstructured Mesh Generation

  • Chapter
  • First Online:
Mesh Generation and Adaptation

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 30))

  • 1039 Accesses

Abstract

After a brief historical review of unstructured grid generation methods the two ‘breakthrough workarounds’ that made these methods reliable industrial tools are discussed. In many previous publications these important ‘workarounds’ were never mentioned. Yet without them computational science would not have become the third pillar of the empirical sciences (besides theory and experiments).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arcilla, A.S., Häuser, J., Eiseman, P.R., Thompson, J.F. (eds.): Proc. 3rd Int. Conf. Numerical Grid Generation in Computational Fluid Dynamics and Related Fields. North-Holland (1991)

    Google Scholar 

  2. Aubry, R., Löhner, R.: Generation of viscous grids at ridges and corners. Int. J. Numer. Methods Eng. 77, 1247–1289 (2009)

    Article  MATH  Google Scholar 

  3. Baker, T.J.: Three-Dimensional Mesh Generation by Triangulation of Arbitrary Point Sets. AIAA-CP-87-1124, 8th CFD Conf., Hawaii (1987)

    Google Scholar 

  4. Baker, T.J.: Developments and trends in three-dimensional mesh generation. Appl. Numer. Mathods 5, 275–304 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boender, E.: Reliable Delaunay-based mesh generation and mesh improvement. Commun. Appl. Numer. Methods Eng. 10, 773–783 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowyer, A.: Computing Dirichlet tesselations. Comput. J. 24(2), 162–167 (1981)

    Article  MathSciNet  Google Scholar 

  7. Carey, G.F.: Grid Generation, Refinement, and Redistribution. Wiley, London (1993)

    Google Scholar 

  8. Carey, G.F.: Computational Grids: Generation, Adaption, and Solution. Taylor & Francis, London (1997)

    MATH  Google Scholar 

  9. Cavendish, J.C.: Automatic triangulation of arbitrary planar domains for the finite element method. Int. J. Numer. Methods Eng. 8, 679–696 (1974)

    Article  MATH  Google Scholar 

  10. Cavendish, J.C., Field, D.A., Frey, W.H.: An approach to automatic three-dimensional finite element generation. Int. J. Numer. Methods Eng. 21, 329–347 (1985)

    Article  MATH  Google Scholar 

  11. Chen, J., Zheng, J., Zheng, Y., Si, H., Hassan, O., Morgan, K.: Improved boundary constrained tetrahedral mesh generation by mesh transformation. Appl. Math. Model. 51, 764–790 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, B.K., Chin, H.Y., Loon, Y.I., Lee, J.W.: Triangulation of scattered data in 3D space. Comput. Aided Geom. Design 20, 239–248 (1988)

    Article  Google Scholar 

  13. Frey, W.H.: Selective refinement: a new strategy for automatic node placement in graded triangular meshes. Int. J. Numer. Methods Eng. 24, 2183–2200 (1987)

    Article  MATH  Google Scholar 

  14. Frey, P.J., George, P.L.: Mesh Generation Application to Finite Elements. Hermes Science Publishing, Oxford, Paris (2000)

    MATH  Google Scholar 

  15. Frykestig, J.: Advancing Front Mesh Generation Techniques with Application to the Finite Element Method. Pub. 94:10, Chalmers University of Technology, Göteborg, Sweden (1994)

    Google Scholar 

  16. Fuchs, A.: Automatic grid generation with almost regular Delaunay tetrahedra. In: Proc. 7th Int. Meshing Roundtable, pp. 133–148 (1998)

    Google Scholar 

  17. George, P.L., Hecht, F., Saltel, E.: Fully automatic mesh generation for 3D domains of any shape. Impact Comput. Sci. Eng. 2(3), 187–218 (1990)

    Article  MATH  Google Scholar 

  18. George, P.L.: Automatic Mesh Generation. Wiley, London (1991)

    MATH  Google Scholar 

  19. George, P.L., Hecht, F., Saltel, E.: Automatic mesh generator with specified boundary. Comput. Methods Appl. Mech. Eng. 92, 269–288 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. George, P.L., Hermeline, F.: Delaunay’s mesh of a convex polyhedron in dimension d. Application to arbitrary Polyhedra. Int. J. Numer. Methods Eng. 33, 975–995 (1992)

    Article  MATH  Google Scholar 

  21. George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing. Editions Hermes, Paris (1998)

    MATH  Google Scholar 

  22. Hassan, O., Probert, E.J., Morgan, K., Peraire, J.: Mesh generation and adaptivity for the solution of compressible viscous high speed flows. Int. J. Numer. Methods. Eng. 38(7), 1123–1148 (1995)

    Article  MATH  Google Scholar 

  23. Hassan, O., Morgan, K., Probert, E.J., Peraire, J.: Unstructured tetrahedral mesh generation for three-dimensional viscous flows. Int. J. Numer. Methods Eng. 39(4), 549–567 (1996)

    Article  MATH  Google Scholar 

  24. Holmes, D.G., Lamson, S.C.: Compressible flow solutions on adaptive triangular meshes. In: Open Forum AIAA- Reno’86—Meeting (1986)

    Google Scholar 

  25. Holmes, D.G., Snyder, D.D.: The generation of unstructured triangular meshes using Delaunay triangulation. In: Sengupta et al. (eds.), Numerical Grid Generation in Computational Fluid Dynamics, pp. 643–652. Pineridge Press, Swansea, Wales (1988)

    Google Scholar 

  26. Huet, F.: Generation de Maillage Automatique dans les Configurations Tridimensionelles Complexes Utilization d’une Methode de ‘Front’; AGARD-CP-464, 17 (1990)

    Google Scholar 

  27. Jin, H., Tanner, R.I.: Generation of unstructured tetrahedral meshes by the advancing front technique. Int. J. Numer. Methods Eng. 36, 1805–1823 (1993)

    Article  MATH  Google Scholar 

  28. Joe, B.: Construction of three-dimensional Delaunay triangulations using local transformations. Comput. Aided Geom. Design 8, 123–142 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Joe, B.: Delaunay versus max-min solid angle triangulations for three-dimensional mesh generation. Int. J. Numer. Methods Eng. 31, 987–997 (1991)

    Article  MATH  Google Scholar 

  30. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sc. 9(3), 219–242 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lo, S.H.: A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Methods Eng. 21, 1403–1426 (1985)

    Article  MATH  Google Scholar 

  32. Lo, S.H.: Finite element mesh generation over curved surfaces. Comput. Struct. 29, 731–742 (1988)

    Article  MATH  Google Scholar 

  33. Löhner, R., Parikh, P.: Three-dimensional grid generation by the advancing front method. Int. J. Numer. Methods Fluids 8, 1135–1149 (1988)

    Article  MATH  Google Scholar 

  34. Löhner, R.: Three-dimensional fluid-structure interaction using a finite element solver and adaptive remeshing. Comput. Syst. Eng. 1(2–4), 257–272 (1990)

    Article  Google Scholar 

  35. Löhner, R., Baum, J.D.: Adaptive H-refinement on 3-D unstructured grids for transient problems. Int. J. Numer. Methods Fluids 14, 1407–1419 (1992)

    Article  MATH  Google Scholar 

  36. Löhner, R., Camberos, J., Merriam, M.: Parallel unstructured grid generation. Comput. Methods Appl. Mech. Eng. 95, 343–357 (1992)

    Article  MATH  Google Scholar 

  37. Löhner, R.: Automatic unstructured grid generators. Finite Elements Anal. Design 25, 111–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Löhner, R., Oñate, E.: An advancing front technique for filling space with arbitrary objects. Int. J. Numer. Methods Eng. 78, 1618–1630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Löhner, R., Oñate, E.: Advancing front techniques for filling space with arbitrary separated objects. Finite Elements Anal. Design 46, 140–151 (2010)

    Article  Google Scholar 

  40. Marcum, D.L., Weatherill, N.P.: Unstructured grid generation using iterative point insertion and local reconnection. AIAA J. 33(9), 1619–1625 (1995)

    Article  MATH  Google Scholar 

  41. Mavriplis, D.J.: An advancing front Delaunay triangulation algorithm designed for robustness. In: AIAA-93-0671 (1993)

    Google Scholar 

  42. Merriam, M.: An efficient advancing front algorithm for Delaunay triangulation. In: AIAA-91-0792 (1991)

    Google Scholar 

  43. Merriam, M., Barth, T.: 3D CFD in a day: the laser digitizer project. In: AIAA-91-1654 (1991)

    Google Scholar 

  44. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comput. Phys. 72, 449–466 (1987)

    Article  MATH  Google Scholar 

  45. Peraire, J., Peiro, J., Formaggia, L., Morgan, K., Zienkiewicz, O.C.: Finite element Euler calculations in three dimensions. Int. J. Numer. Methods Eng. 26, 2135–2159 (1988)

    Article  MATH  Google Scholar 

  46. Peraire, J., Morgan, K., Peiro, J.: Unstructured finite element mesh generation and adaptive procedures for CFD. In: AGARD-CP-464, 18 (1990)

    Google Scholar 

  47. Peraire, J., Peiro, J., Morgan, K.: Adaptive remeshing for three-dimensional compressible flow computations. J. Comput. Phys. 103, 269–285 (1992)

    Article  MATH  Google Scholar 

  48. Rebay, S.: Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm. J. Comput. Phys. 106(1), 125–138 (1993)

    Article  MATH  Google Scholar 

  49. Sandia National Laboratories: Proc. International Meshing Roundtable (1992–Present)

    Google Scholar 

  50. Sengupta, S., Häuser, J., Eiseman, P.R., Thompson, J.F. (eds.): Proc. 2nd Int. Conf. Numerical Grid Generation in Computational Fluid Dynamics. Pineridge Press, Swansea, Wales (1988)

    Google Scholar 

  51. Shenton, D.N., Cendes, Z.J.: Three-dimensional finite element mesh generation using Delaunay tesselation. In: IEEE Trans. on Magnetics, MAG-21, pp. 2535–2538 (1985)

    Google Scholar 

  52. Shepard, M.S., Georges, M.K.: Automatic three-dimensional mesh generation by the finite octree technique. Int. J. Numer. Methods Eng. 32, 709–749 (1991)

    Article  MATH  Google Scholar 

  53. Sloan, S.W., Houlsby, G.T.: An implementation of Watson’s algorithm for computing 2-dimensional Delaunay triangulations. Adv. Eng. Softw. 6(4), 192–197 (1984)

    Article  Google Scholar 

  54. Tanemura, M., Ogawa, T., Ogita, N.: A new algorithm for three-dimensional Voronoi tesselation. J. Comput. Phys. 51, 191–207 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  55. van Phai, N.: Automatic mesh generation with tetrahedron elements. Int. J. Numer. Methods Eng. 18, 237–289 (1982)

    MATH  Google Scholar 

  56. Walton, S., Hassan, O., Morgan, K.: Advances in co-volume mesh Gneration and mesh optimization techniques. Comput. Struct. 181, 70–88 (2017)

    Article  Google Scholar 

  57. Wang, D., Hassan, O., Morgan, K., Weatherill, N.: Enhanced remeshing from STL files with applications to surface grid generation. Commun. Numer. Methods Eng. 23(3), 227–139 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Watson, D.F.: Computing the N-dimensional Delaunay tesselation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

  59. Weatherill, N.P.: Delaunay triangulation in computational fluid dynamics. Comput. Mathods Appl. 24(5/6), 129–150 (1992)

    Article  MATH  Google Scholar 

  60. Weatherill, N.P., Hassan, O., Marchant, M.J., Marcum, D.L.: Adaptive inviscid flow solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes. In: AIAA-93-3390 (1993)

    Google Scholar 

  61. Weatherill, N.P., Eiseman, P.R., Häuser, J., Thompson, J.F. (eds.): Proc. 4th Int. Conf. Numerical Grid Generation in Computational Fluid Dynamics and Related Fields. Pineridge Press, Swansea, Wales (1993)

    Google Scholar 

  62. Weatherill, N.P., Hassan, O.: Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int. J. Numer. Methods Eng. 37, 2005–2039 (1994)

    Article  MATH  Google Scholar 

  63. Xie, Z.Q., Hassan, O., Morgan, K.: Tayloring unstructured meshes for use with a 3-D time domain co-volume algorithm in computational electromagnetics. Int. J. Numer. Methods Eng. 87, 48–65 (2011)

    Article  MATH  Google Scholar 

  64. Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3D finite element analysis. Comput. Mech. 51, 361–374 (2013)

    Article  MathSciNet  Google Scholar 

  65. Yerry, M.A., Shepard, M.S.: Automatic three-dimensional mesh generation by the modified-octree technique. Int. J. Numer. Methods Eng. 20, 1965–1990 (1984)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to acknowledge insightful discussions with Oubey Hassan on a whole range of topics in computational mechanics. He has distinguished himself in an astounding number of fields, among them grid generation, flow and electromagnetic solvers, parallel computing, visualization, optimization and control, and has contributed in each of these in a significant way.

The collaboration with SLRasch, Stuttgart for the toldo case and ASI Inc., Potomac, MD, for the pellet ignition simulation is greatfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainald Löhner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Löhner, R. (2022). Breakthrough ‘Workarounds’ in Unstructured Mesh Generation. In: Sevilla, R., Perotto, S., Morgan, K. (eds) Mesh Generation and Adaptation. SEMA SIMAI Springer Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-92540-6_12

Download citation

Publish with us

Policies and ethics