[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Differential Equations with Fractional Derivatives for Studying an Oscillator with Viscoelastic Damping

  • Conference paper
  • First Online:
Proceedings of FORM 2021

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 170))

  • 298 Accesses

Abstract

The paper considers differential equations with fractional derivatives used for describing the functioning of an oscillator with viscoelastic damping as well as diffusion processes. On the basis of a mathematical model with fractional derivatives, the present research deals with the qualitative parameter of the model to confirm the consistency of the given process with experimental data. An analysis of recent publications on this topic has been carried out and a method of obtaining a qualitative assessment of the obtained mathematical model is given. The presented approach was tested in a numerical experiment using the developed software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Orlov VN, Ivanova TV (2016) Matematicheskoye modelirovaniye v issledovanii vosproizvodstva kadrov massovykh professiy v rasteniyevodstve i zhivotnovodstve Chuvashskoy Respubliki, (Mathematical modeling in the study of the reproduction of personnel of mass professions in plant growing and animal husbandry of the Chuvash Republic). Ekonomika sel'skokhozyaystvennykh i pererabatyvayushchikh predpriyatiy. Moscow. № 12. pp 73–77

    Google Scholar 

  2. Orlov VN (2016) N.I. Kul'mankova Prognozirovaniye v tekhnologii vosproizvodstva sviney (Forecasting in the technology of reproduction of pigs, Innovations in the agro-industrial complex), Innovatsii v APK: problemy i perspektivy.-Belgorodskiy GSKHA, № 4 (12). pp 130–137

    Google Scholar 

  3. Orlov VN (2016) T.V. Ivanova Matematicheskoye modelirovaniye v issledovanii vosproizvodstva kadrov massovykh professiy v rasteniyevodstve i zhivotnovodstve Chuvashskoy Respubliki (Mathematical modeling in the study of the reproduction of personnel of mass professions in plant growing and animal husbandry of the Chuvash Republic), Ekonomika sel'skokhozyaystvennykh i pererabatyvayushchikh predpriyatiy. M. № 12.-S. 73–77

    Google Scholar 

  4. Orlov VN, Ivanova TV, Sokolova GN (2017) Metodika otsenki kadrovogo potentsiala v sel'skom khozyaystve (Methodology for assessing human resources in agriculture), Ekonomika sel'skogo khozyaystva Rossii № 7. S. 47–53

    Google Scholar 

  5. Orlov V, Detina E, Kovalchuk O (2018) Mathematical modeling of emergency situations at objects of production and gas transportation 04012, MATEC Web of Conferences Volume 251 (2018)VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018), Moscow, Russia, November 14–16, 2018 Published online: 14 December (2018). https://doi.org/10.1051/matecconf/201825104012

  6. Orlov V, Detina E (2018) Probabilistic approach to the investigation of the causes of emergencies at the gas pipeline facilities 04041, MATEC Web of Conferences, Volume 251 (2018)VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018), Published online: 14 December (2018). https://doi.org/10.1051/matecconf/201825104041

  7. Orlov V, Kulmakova N, Ivanitskiy A, Sevastyanova N, Mongush S (2018) Topical problems of architecture, civil engineering and environmental economics (TPACEE 2018). Article Number 06009. https://doi.org/10.1051/e3sconf/20199106009

  8. Orlov V, Ivanova T, Arkhipova V, Ivanitskaya I (2018) Assessment of the influence of social factors on reproduction of personnel potential in agriculture of Russia, E3S Web Conf. Toм 110, (2019), International scientific conference SPbWOSCE-2018 «Business technologies for sustainable urban development» https://doi.org/10.1051/e3sconf/201911002143

  9. Orlov V, Ivanova T, Brenchagova S, Rumbayeva N (2020) Mathematical modeling of economic factors impact: reproduction of personnel potential in agriculture sector of Russia, IOP Conf Ser Earth Environ Sci 433:012012. IOP Publishing. https://doi.org/10.1088/1755-1315/433/1/012012 IOP conf. Series: Science of Earth and the environment 433 (2020) 012012 IOP Edition https://doi.org/10.1088/1755-1315/433/1/012012

  10. Orlov V, Detina E, Kovalchuk O (2021) Mathematical modelling in tasks of predicting the operational reliability of gas networks facilities, IOP Conf Ser Mater Sci Eng 1030:012083. IOP Publishing https://doi.org/10.1088/1757-899X/1030/1/012083

  11. Orlov VN, Elsayed AM (2020) Numerical scheme for solving time–space vibration, string equation of fractional derivative. MDPI, Spec Issue Dyn Syst Optimal Control Math 8(7):1069. https://doi.org/10.3390/math8071069

  12. Huang F, Liu F (2005) The fundamental solution of the space–time fractional advection–dispersion equation. J Appl Math Comput 18:339–350

    Article  MathSciNet  Google Scholar 

  13. Shen SJ, Liu FW, Anh V, Turner I (2008) The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J Appl Math 73(6):850–872

    Article  MathSciNet  Google Scholar 

  14. Aleroev TS, Aleroeva HT (2014) On the Basis of a System of the Eigenfunctions and Associated Functions of Operators Generated by Differential Equations of the Second Order with a Fractional Derivative in the Lowest Term, VESTNIK NATSIONAL’NOGO ISSLEDOVATEL’SKOGO YADERNOGO UNIVERSITETA “MIFI” 3(6):646–648

    Google Scholar 

  15. Aleroev TS, Kirane M, Tang YF (2013) The boundary-value problem for a differential operator of fractional order. J Math Sci 194(5):499–512

    Article  MathSciNet  Google Scholar 

  16. Aleroev MT, Aleroev TS, Kirane M, Tang YF (2015) On one class of persymmetric matrices generated by boundary value problems for differential equations of fractional order. Appl Math Comput 268:151–163

    MathSciNet  MATH  Google Scholar 

  17. Aleroev TS (2000) Boundary-value problems for differential equations with fractional derivatives. Dissertation of Doctoral Degree (Phys.-Math. Sci.), MGU, Moscow (2000)

    Google Scholar 

  18. Benson DA (1988) The fractional advection–dispersion equation: development and application (Ph.D. dissertation), University of Nevada

    Google Scholar 

  19. Khasambiyev MV, Aleroyev TS (2014) Krayevaya zadacha dlya odnomernogo drobnogo differentsial'nogo uravneniya advektsii-diffuzii. Vestnik MGSU (6):4

    Google Scholar 

  20. Khasambiyev MV (2015) Krayevaya zadacha dlya mnogomernogo drobnogo differentsi-al'nogo uravneniya advektsii-diffuzii. Vestnik MGSU (6):8

    Google Scholar 

  21. Sedletskii AM (1994) Asymptotic formulas for zeros of a function of Mittage-Leffler type. Anal Math 20:117–132

    Article  MathSciNet  Google Scholar 

  22. Bagley RL, Torvik PJ (1983) A thoretical basis for the application of fractional calculus to viscoelasticity. J Rheolog 27(3):201–203

    Google Scholar 

  23. Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748

    Google Scholar 

  24. Kekharsaeva ER, Pirozhkov VG (2016) Modelirovanie izmeneniia deformatsionno-prochnostnykh kha-rakteristik asfal'tobetona pri nagruzhenii s pomoshch'iu drobnogo ischisleniia. Sbornik trudov 6-i vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem im. I. F. Obraztsova i Iu. G. Ianovskogo “Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred”. Moskva, IPRIM RAN s. 104–109

    Google Scholar 

  25. Kekharsaeva ER, Aleroev TS (2001) Model’ deformatsionno-prochnostnykh kharakteristik khloroso-derzhashchikh poliefirov na osnove proizvodnykh drobnogo poriadka. Plasticheskie massy 3:s. 35

    Google Scholar 

  26. Aleroev TS et al (2019) About one method for the boundary value problem eigenvalues calcuating for a second-order differential equation with a fractional derivative. Special issue on fractional dynamical systems and applications

    Google Scholar 

  27. Ogorodnikov YN, Radchenko VP, Ungarova LG (2018) Matematicheskiye modeli nelineynoy vyazkouprugosti s operatorami drobnogo integro-differentsirovaniya. vestnik PNIPU. Mekhanika № 2 PNRPU Mechanics bulletin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreev, A., Aleroev, T., Khasambiev, M., Aleroeva, H. (2022). Differential Equations with Fractional Derivatives for Studying an Oscillator with Viscoelastic Damping. In: Akimov, P., Vatin, N. (eds) Proceedings of FORM 2021. Lecture Notes in Civil Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-79983-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79983-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79982-3

  • Online ISBN: 978-3-030-79983-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics