Abstract
The paper considers differential equations with fractional derivatives used for describing the functioning of an oscillator with viscoelastic damping as well as diffusion processes. On the basis of a mathematical model with fractional derivatives, the present research deals with the qualitative parameter of the model to confirm the consistency of the given process with experimental data. An analysis of recent publications on this topic has been carried out and a method of obtaining a qualitative assessment of the obtained mathematical model is given. The presented approach was tested in a numerical experiment using the developed software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Orlov VN, Ivanova TV (2016) Matematicheskoye modelirovaniye v issledovanii vosproizvodstva kadrov massovykh professiy v rasteniyevodstve i zhivotnovodstve Chuvashskoy Respubliki, (Mathematical modeling in the study of the reproduction of personnel of mass professions in plant growing and animal husbandry of the Chuvash Republic). Ekonomika sel'skokhozyaystvennykh i pererabatyvayushchikh predpriyatiy. Moscow. № 12. pp 73–77
Orlov VN (2016) N.I. Kul'mankova Prognozirovaniye v tekhnologii vosproizvodstva sviney (Forecasting in the technology of reproduction of pigs, Innovations in the agro-industrial complex), Innovatsii v APK: problemy i perspektivy.-Belgorodskiy GSKHA, № 4 (12). pp 130–137
Orlov VN (2016) T.V. Ivanova Matematicheskoye modelirovaniye v issledovanii vosproizvodstva kadrov massovykh professiy v rasteniyevodstve i zhivotnovodstve Chuvashskoy Respubliki (Mathematical modeling in the study of the reproduction of personnel of mass professions in plant growing and animal husbandry of the Chuvash Republic), Ekonomika sel'skokhozyaystvennykh i pererabatyvayushchikh predpriyatiy. M. № 12.-S. 73–77
Orlov VN, Ivanova TV, Sokolova GN (2017) Metodika otsenki kadrovogo potentsiala v sel'skom khozyaystve (Methodology for assessing human resources in agriculture), Ekonomika sel'skogo khozyaystva Rossii № 7. S. 47–53
Orlov V, Detina E, Kovalchuk O (2018) Mathematical modeling of emergency situations at objects of production and gas transportation 04012, MATEC Web of Conferences Volume 251 (2018)VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018), Moscow, Russia, November 14–16, 2018 Published online: 14 December (2018). https://doi.org/10.1051/matecconf/201825104012
Orlov V, Detina E (2018) Probabilistic approach to the investigation of the causes of emergencies at the gas pipeline facilities 04041, MATEC Web of Conferences, Volume 251 (2018)VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018), Published online: 14 December (2018). https://doi.org/10.1051/matecconf/201825104041
Orlov V, Kulmakova N, Ivanitskiy A, Sevastyanova N, Mongush S (2018) Topical problems of architecture, civil engineering and environmental economics (TPACEE 2018). Article Number 06009. https://doi.org/10.1051/e3sconf/20199106009
Orlov V, Ivanova T, Arkhipova V, Ivanitskaya I (2018) Assessment of the influence of social factors on reproduction of personnel potential in agriculture of Russia, E3S Web Conf. Toм 110, (2019), International scientific conference SPbWOSCE-2018 «Business technologies for sustainable urban development» https://doi.org/10.1051/e3sconf/201911002143
Orlov V, Ivanova T, Brenchagova S, Rumbayeva N (2020) Mathematical modeling of economic factors impact: reproduction of personnel potential in agriculture sector of Russia, IOP Conf Ser Earth Environ Sci 433:012012. IOP Publishing. https://doi.org/10.1088/1755-1315/433/1/012012 IOP conf. Series: Science of Earth and the environment 433 (2020) 012012 IOP Edition https://doi.org/10.1088/1755-1315/433/1/012012
Orlov V, Detina E, Kovalchuk O (2021) Mathematical modelling in tasks of predicting the operational reliability of gas networks facilities, IOP Conf Ser Mater Sci Eng 1030:012083. IOP Publishing https://doi.org/10.1088/1757-899X/1030/1/012083
Orlov VN, Elsayed AM (2020) Numerical scheme for solving time–space vibration, string equation of fractional derivative. MDPI, Spec Issue Dyn Syst Optimal Control Math 8(7):1069. https://doi.org/10.3390/math8071069
Huang F, Liu F (2005) The fundamental solution of the space–time fractional advection–dispersion equation. J Appl Math Comput 18:339–350
Shen SJ, Liu FW, Anh V, Turner I (2008) The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J Appl Math 73(6):850–872
Aleroev TS, Aleroeva HT (2014) On the Basis of a System of the Eigenfunctions and Associated Functions of Operators Generated by Differential Equations of the Second Order with a Fractional Derivative in the Lowest Term, VESTNIK NATSIONAL’NOGO ISSLEDOVATEL’SKOGO YADERNOGO UNIVERSITETA “MIFI” 3(6):646–648
Aleroev TS, Kirane M, Tang YF (2013) The boundary-value problem for a differential operator of fractional order. J Math Sci 194(5):499–512
Aleroev MT, Aleroev TS, Kirane M, Tang YF (2015) On one class of persymmetric matrices generated by boundary value problems for differential equations of fractional order. Appl Math Comput 268:151–163
Aleroev TS (2000) Boundary-value problems for differential equations with fractional derivatives. Dissertation of Doctoral Degree (Phys.-Math. Sci.), MGU, Moscow (2000)
Benson DA (1988) The fractional advection–dispersion equation: development and application (Ph.D. dissertation), University of Nevada
Khasambiyev MV, Aleroyev TS (2014) Krayevaya zadacha dlya odnomernogo drobnogo differentsial'nogo uravneniya advektsii-diffuzii. Vestnik MGSU (6):4
Khasambiyev MV (2015) Krayevaya zadacha dlya mnogomernogo drobnogo differentsi-al'nogo uravneniya advektsii-diffuzii. Vestnik MGSU (6):8
Sedletskii AM (1994) Asymptotic formulas for zeros of a function of Mittage-Leffler type. Anal Math 20:117–132
Bagley RL, Torvik PJ (1983) A thoretical basis for the application of fractional calculus to viscoelasticity. J Rheolog 27(3):201–203
Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748
Kekharsaeva ER, Pirozhkov VG (2016) Modelirovanie izmeneniia deformatsionno-prochnostnykh kha-rakteristik asfal'tobetona pri nagruzhenii s pomoshch'iu drobnogo ischisleniia. Sbornik trudov 6-i vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem im. I. F. Obraztsova i Iu. G. Ianovskogo “Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred”. Moskva, IPRIM RAN s. 104–109
Kekharsaeva ER, Aleroev TS (2001) Model’ deformatsionno-prochnostnykh kharakteristik khloroso-derzhashchikh poliefirov na osnove proizvodnykh drobnogo poriadka. Plasticheskie massy 3:s. 35
Aleroev TS et al (2019) About one method for the boundary value problem eigenvalues calcuating for a second-order differential equation with a fractional derivative. Special issue on fractional dynamical systems and applications
Ogorodnikov YN, Radchenko VP, Ungarova LG (2018) Matematicheskiye modeli nelineynoy vyazkouprugosti s operatorami drobnogo integro-differentsirovaniya. vestnik PNIPU. Mekhanika № 2 PNRPU Mechanics bulletin
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andreev, A., Aleroev, T., Khasambiev, M., Aleroeva, H. (2022). Differential Equations with Fractional Derivatives for Studying an Oscillator with Viscoelastic Damping. In: Akimov, P., Vatin, N. (eds) Proceedings of FORM 2021. Lecture Notes in Civil Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-79983-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-79983-0_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79982-3
Online ISBN: 978-3-030-79983-0
eBook Packages: EngineeringEngineering (R0)