[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Efficient Discovery of Periodic-Frequent Patterns in Columnar Temporal Databases

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices (IEA/AIE 2021)

Abstract

Finding periodic-frequent patterns in temporal databases is a challenging problem of great importance in many real-world applications. Most previous studies focused on finding these patterns in row temporal databases. To the best of our knowledge, there exists no study that aims to find periodic-frequent patterns in columnar temporal databases. One cannot ignore the importance of the knowledge that exists in very large columnar temporal databases. It is because the real-world big data is widely stored in columnar temporal databases. With this motivation, this paper proposes an efficient algorithm, Periodic Frequent-Equivalence CLass Transformation (PF-ECLAT), to find periodic-frequent patterns in a columnar temporal database. Experimental results on sparse and dense real-world databases demonstrate that PF-ECLAT is not only memory and runtime efficient but also highly scalable. Finally, we present the usefulness of PF-ECLAT with a case study on air pollution analytics.

First three authors have equally contributed to 90% of the paper. Remaining author has contributed to 10% of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C.: Applications of frequent pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 443–467. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2_18

    Chapter  MATH  Google Scholar 

  2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216 (1993)

    Google Scholar 

  3. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k periodic-frequent pattern from transactional databases without support threshold. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10392-6_3

    Chapter  Google Scholar 

  4. Anirudh, A., Kiran, R.U., Reddy, P.K., Kitsuregawa, M.: Memory efficient mining of periodic-frequent patterns in transactional databases. In: 2016 IEEE Symposium Series on Computational Intelligence, pp. 1–8 (2016)

    Google Scholar 

  5. Kiran, R.U., Kitsuregawa, M.: Novel techniques to reduce search space in periodic-frequent pattern mining. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 377–391. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05813-9_25

    Chapter  Google Scholar 

  6. Luna, J.M., Fournier-Viger, P., Ventura, S.: Frequent itemset mining: a 25 years review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(6) (2019)

    Google Scholar 

  7. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_24

    Chapter  Google Scholar 

  8. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Penugonda, R., Palla, L., Rage, U.K., Watanobe, Y., Zettsu, K. (2021). Towards Efficient Discovery of Periodic-Frequent Patterns in Columnar Temporal Databases. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12798. Springer, Cham. https://doi.org/10.1007/978-3-030-79457-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79457-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79456-9

  • Online ISBN: 978-3-030-79457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics