Abstract
Spanning trees are a representative example of linear matroid bases that are efficiently countable. Perfect matchings of Pfaffian bipartite graphs are a countable example of common bases of two matrices. Generalizing these two, Webb (2004) introduced the notion of Pfaffian pairs as a pair of matrices for which counting of their common bases is tractable via the Cauchy–Binet formula.
This paper studies counting on linear matroid problems extending Webb’s work. We first introduce “Pfaffian parities” as an extension of Pfaffian pairs to the linear matroid parity problem, which is a common generalization of the linear matroid intersection problem and the matching problem. We show that a large number of efficiently countable discrete structures are interpretable as special cases of Pfaffian pairs and parities.
We also observe that the fastest randomized algorithms for the linear matroid intersection and parity problems by Harvey (2009) and Cheung–Lau–Leung (2014) can be derandomized for Pfaffian pairs and parities. We further present polynomial-time algorithms to count the number of minimum-weight solutions on weighted Pfaffian pairs and parities.
The full version of this paper is available at https://arxiv.org/abs/1912.00620.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An equivalent definition of Pfaffian orientation is as follows: an orientation of G is Pfaffian if every even-length cycle C such that \(G-V(C)\) has a perfect matching has an odd number of edges directed in either direction.
References
Anari, N., Gharan, S.O., Vinzant, C.: Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018), pp. 35–46 (2018). https://doi.org/10.1109/FOCS.2018.00013
Anari, N., Liu, K., Gharan, S.O., Vinzant, C.: Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid. In: Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC 2019), pp. 1–12 (2019). https://doi.org/10.1145/3313276.3316385
Cheung, H.Y., Lau, L.C., Leung, K.M.: Algebraic algorithms for linear matroid parity problems. ACM Trans. Algorithms 10(3), 1–26 (2014). https://doi.org/10.1145/2601066
Colbourn, C.J., Provan, J.S., Vertigan, D.: The complexity of computing the Tutte polynomial on transversal matroids. Combinatorica 15(1), 1–10 (1995). https://doi.org/10.1007/BF01294456
Edmonds, J.: Matroid partition. In: Dantzig, G.B., Veinott, Jr., A.F. (eds.) Mathematics of the Decision Sciences: Part I, Lectures in Applied Mathematics, vol. 11, pp. 335–345. AMS, Providence, RI (1968). https://doi.org/10.1007/978-3-540-68279-0_7
Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York, NY (1970). https://doi.org/10.1007/3-540-36478-1_2
Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, New York, NY (2011)
Gabow, H.N., Stallmann, M.: An augmenting path algorithm for linear matroid parity. Combinatorica 6(2), 123–150 (1986). https://doi.org/10.1007/BF02579169
Gabow, H.N., Xu, Y.: Efficient theoretic and practical algorithms for linear matroid intersection problems. J. Comput. Syst. Sci. 53(1), 129–147 (1996). https://doi.org/10.1006/jcss.1996.0054
Gallai, T.: Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen. Acta Mathematica Academiae Scientiarum Hungaricae 12, 131–173 (1964). https://doi.org/10.1007/BF02066678
Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58(3), 300–321 (1985). https://doi.org/10.1016/0001-8708(85)90121-5
Goodall, A., De Mier, A.: Spanning trees of 3-uniform hypergraphs. Adv. Appl. Math. 47(4), 840–868 (2011). https://doi.org/10.1016/j.aam.2011.04.006
Harvey, N.J.A.: Algebraic algorithms for matching and matroid problems. SIAM J. Comput. 39(2), 679–702 (2009). https://doi.org/10.1137/070684008
Ishikawa, M., Wakayama, M.: Minor summation formula of Pfaffians. Linear Multilinear Algebra 39(3), 285–305 (1995). https://doi.org/10.1080/03081089508818403
Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm. SIAM J. Comput. (to appear). https://doi.org/10.1137/17M1141709
Kasteleyn, P.W.: The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice. Physica, 27(12), 1209–1225 (1961). https://doi.org/10.1016/0031-8914(61)90063-5
Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, New York, NY (1967)
Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148(12), 497–508 (1847). https://doi.org/10.1002/andp.18471481202
Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York, NY (1976)
Lindström, B.: On the vector representations of induced matroids. Bull. London Math. Soc. 5(1), 85–90 (1973). https://doi.org/10.1112/blms/5.1.85
Little, C.H.C.: An extension of Kasteleyn’s method of enumerating the 1-factors of planar graphs. In: Holton, D.A. (ed.) Combinatorial Mathematics. LNM, vol. 403, pp. 63–72. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0057377
Lovász, L.: Matroid matching and some applications. J. Comb. Theor. Ser. B 28(2), 208–236 (1980). https://doi.org/10.1016/0095-8956(80)90066-0
Mader, W.: Über die Maximalzahl kreuzungsfreier \(H\)-Wege. Archiv der Mathematik 31(1), 387–402 (1978). https://doi.org/10.1007/BF01226465
Maurer, S.B.: Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math. 30(1), 143–148 (1976). https://doi.org/10.1137/0130017
Murota, K.: Computing the degree of determinants via combinatorial relaxation. SIAM J. Comput. 24(4), 765–796 (1995)
Orlin, J.B.: A fast, simpler algorithm for the matroid parity problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 240–258. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_17
Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Ann. Math. 150(3), 929–975 (1999). https://doi.org/10.2307/121059
Schrijver, A.: Combinatorial Optimization, Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)
Snook, M.: Counting bases of representable matroids. Electron. J. Comb. 19(4), P41 (2012)
Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. Philos. Mag. 6(68), 1061–1063 (1961). https://doi.org/10.1080/14786436108243366
Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Math. Proc. Camb. Philos. Soc. 44(4), 463–482 (1948). https://doi.org/10.1017/S030500410002449X
Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979). https://doi.org/10.1016/0304-3975(79)90044-6
Vazirani, V.V.: NC algorithms for computing the number of perfect matchings in \(K_{3,3}\)-free graphs and related problems. Inf. Comput. 80(2), 152–164 (1989). https://doi.org/10.1016/0890-5401(89)90017-5
Webb, K.P.: Counting Bases. Ph.D. thesis, University of Waterloo, Waterloo, ON (2004)
Yamaguchi, Y.: Shortest disjoint \(\cal{S}\)-paths via weighted linear matroid parity. In: Hong, S.H. (ed.) Proceedings of the 27th International Symposium on Algorithms and Computation (ISAAC ’16). Leibniz International Proceedings in Informatics, vol. 64, pp. 63:1–63:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.63
Acknowledgments
The authors thank Satoru Iwata for his helpful comments, and Yusuke Kobayashi, Yutaro Yamaguchi, and Koyo Hayashi for discussions. This work was supported by JST ACT-I Grant Number JPMJPR18U9, Japan, and Grant-in-Aid for JSPS Research Fellow Grant Number JP18J22141, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Matoya, K., Oki, T. (2021). Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection and Parity Problems. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-73879-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73878-5
Online ISBN: 978-3-030-73879-2
eBook Packages: Computer ScienceComputer Science (R0)