Abstract
This study examined the relationships between conditional variance of individual stock returns and trading volume and mixed variable in terms of trading volume with price movement indicator. The main problem is to define the role of volume as such, and in the context of price change in the perception of information, often private information, by traders. Using GARCH(1) model specification in the sample of 10 stocks listed on the Warsaw Stock Exchange the results reveal a decreasing of volatility persistence in nine stocks when contemporaneous trading volume was added to the variance equation. The model with price indicator variables demonstrates a reduction of the persistence in three stocks compared to the model with trading volume alone. Moreover, for more stocks the upward price movement has a greater impact on volatility than the downward price movement. The combined variables, volume and indicator of price movement direction have positive and statistically significant influence on returns’ variation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed HJA, Hassan A, Nasir AMD (2005) The relationship between trading volume, volatility and stock market returns: a test of mixed distribution hypothesis for a pre- and post crisis on Kuala Lumpur Stock Exchange. Investment Manag Financ Innov 2(3):146–158
Będowska-Sójka B, Kliber A (2019) The causality between liquidity and volatility in the Polish Stock Market. Financ Res Lett 30:110–115
Będowska-Sójka B, Kliber A (2021) Information content of liquidity and volatility measures. Physica A Stat Mech Appl 563:125436. https://doi.org/10.1016/j.physa.2020.125436
Bohl MT, Henke H (2003) Trading volume and stock market volatility: the Polish case. Int Rev Financ Anal 12(5):513–525. https://doi.org/10.1016/S1057-5219(03)00066-8
Clark PK (1973) A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41(1):135–155. https://doi.org/10.2307/1913889
Copeland TE (1976) A model of asset trading under the assumption of sequential information arrival. J Financ 31(4):1149–1167. https://doi.org/10.1111/j.1540-6261.1976.tb01966.x
Copeland TE, Friedman D (1987) The effect of sequential information arrival on asset prices: an experimental study. J Financ 42(3):763–797. https://doi.org/10.1111/j.1540-6261.1987.tb04585.x
Doman M (2008) Zależności pomiędzy zmiennością, wolumenem i czasem trwania ceny na Giełdzie Papierów Wartościowych w Warszawie. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania 9:185–199
Ezzat H, Kirkulak-Uludag B (2014) Information arrival and volatility: evidence from the Saudi Arabia Stock Exchange (Tadawul). MPRA Paper No. 61160
Fiszeder P, Perczak G (2016) Low and high prices can improve volatility forecasts during periods of turmoil. Int J Forecast 32(2):398–410
Gallo G, Pacini B (2000) The effects of trading activity on market volatility. Eur J Financ 6:163–175. https://doi.org/10.1080/13518470050020824
Gorgul H, Wójtowicz T (2006) Długookresowe własności wolumenu obrotów i zmienności cen akcji na przykładzie spółek z indeksu DJIA. Badania operacyjne i decyzje 3–4:29–56
Karpoff JM (1987) The relation between price changes and trading volume: a survey. J Financ Quant Anal 22(1):109–126
Koulakiotis A, Dasilas A, Molyneux P (2007) Does trading volume influence GARCH effects? – Some evidence from the Greek market with special reference to banking sector. Investment Manag Financ Innov 4(3):33–38
Lamourex CG, Lastrapes WD (1990a) Heteroskedasticity in stock return data: volume versus GARCH effects. J Financ 45(1):221–229. https://doi.org/10.2307/2328817
Lamourex CG, Lastrapes WD (1990b) Persistence in variance, structural change, and the GARCH model. J Bus Econ Stud 8(2):225–234. https://doi.org/10.2307/1391985
Louhichi W (2011) What drives the volume-volatility relationship on Euronext Paris? Int Rev Financ Anal 20(4):200–206
Nelson DB, Cao CQ (1992) Inequality Constraints in the Univariate GARCH Model. J Bus Econ Stat 10(2):229–235. https://doi.org/10.1080/07350015.1992.10509902
Olbryś J (2018) Testing stability of correlations between liquidity proxies derived from intraday data on the Warsaw Stock Exchange. In: Jajuga K, Locarek-Junge H, Orłowski LT, Staehr K (eds) Contemporary trends and challenges in finance, Proceedings from the 4th Wroclaw International Conference in Finance. Springer, Cham, pp 67–79
Pati PC, Rajib P (2010) Volatility persistence and trading volume in the emerging futures market. J Risk Financ 11(3):296–309
Shen D, Li X, Zhang W (2018) Baidu news information flow and return volatility: evidence for the Sequential Information Arrival Hypothesis. Econ Model 69:127–133. https://doi.org/10.1016/j.econmod.2017.09.012
Shleifer A, Summers LH (1990) The noise trader approach to finance. J Econ Perspect 4(2):19–33. https://doi.org/10.1257/jep.4.2.19
Tan PP, DUA G, Ting SS (2015) Modelling price movement in trading volume-volatility relations. Malays J Econ Stud 52(2):135–156
Tseng TC, Lee CC, Chen MP (2015) Volatility forecast of country ETF: the sequential information arrival hypothesis. Econ Model 47:228–234. https://doi.org/10.1016/j.econmod.2015.02.031
Wang P, Zhang W, Li X, Shen D (2019) Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis. J Econ Interac Coord 14:377–418. https://doi.org/10.1007/s11403-019-00250-9
Wójtowicz T (2008) Wpływ wielkości obrotów na ocenę warunkowej wariancji stóp zwrotu akcji na GPW w Warszawie. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania 10:685–696
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Markowski, L. (2021). The Relationship Between Trading Volume and Returns Volatility on Warsaw Stock Exchange. In: Jajuga, K., Locarek-Junge, H., Orlowski, L.T., Staehr, K. (eds) Contemporary Trends and Challenges in Finance . Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-73667-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-73667-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73666-8
Online ISBN: 978-3-030-73667-5
eBook Packages: Economics and FinanceEconomics and Finance (R0)