Abstract
Over the past few years, the amount of information generated, consumed and stored on the Web has grown exponentially, making it impossible for users to keep up to date. Temporal data representation can help in this process by giving documents a sense of organization. Timelines are a natural way to showcase this data, giving users the chance to get familiar with a topic in a shorter amount of time. Despite their importance, little is known about their use in the context of single documents. In this paper, we present Time-Matters, a novel system to automatically explore arbitrary texts through temporal narratives in an interactive fashion that allows users to get insights into the relevant temporal happenings of a story through multiple components, including temporal annotation, storylines or temporal clustering. In contrast to classical timeline multi-document summarization tasks, we focus on performing text summaries of single documents with a temporal lens. This approach may be of interest to a number of providers such as media outlets, for which automatically building a condensed overview of a text is an important issue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso, O., Shiells, K.: Timelines as summaries of popular scheduled events. In: Proceedings of the 22nd International Conference on World Wide Web (WWW 2013), Rio de Janeiro, Brazil, 13–17 May 2013, pp. 1037–1044 (2013)
Alonso, O., Tremblay, S.-E., Diaz, F.: Automatic generation of event timelines from social data. In: Proceedings of the 2017 ACM on Web Science Conference (WebSci 2017), New York, USA, 25–28 June 2017, pp. 207–211 (2017)
Alonso, O., Kandylas, V., Tremblay, S.-E.: How it happened: discovering and archiving the evolution of a story using social signals. In: Proceedings of the ACM/IESS Joint Conference on Digital Libraries (JCDL 2018), Texas, USA, 3–7 June 2018, pp. 193–202 (2018)
Campos, R., Dias, G., Jorge, A., Jatowt, A.: Survey of temporal information retrieval and related applications. ACM Comput. Surv. 47(2), Article 15 (2014)
Campos, R., Dias, G., Jorge, A.M., Nunes, C.: Identifying top relevant dates for implicit time sensitive queries. Inf. Retrieval J. 20(4), 363–398 (2017). https://doi.org/10.1007/s10791-017-9302-1
Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.: A text feature based automatic keyword extraction method for single documents. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 684–691. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_63
Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.: YAKE! keyword extraction from single documents using multiple local features. Inf. Sci. J. 509, 257–289 (2020)
Campos, R., Jorge, A., Jatowt, A., Sumit, B.: Third International workshop on narrative extraction from texts (Text2Story’20). In: Jose, J., et al. (eds.) Proceedings of the 42nd European Conference on Information Retrieval (ECIR’20), pp. 648–653. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_86
Chang, A.X., Manning, C.D.: SUTIME: a library for recognizing and normalizing time expressions. In: Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), Istambul, Turkey, 23–25 May 2012, pp. 3735–3740 (2012)
Dias, G., Alves, E., Lopes, J.: Topic segmentation algorithms for text summarization and passage retrieval: an exhaustive evaluation. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007), Vancouver, Canada, 22–26 July 2007, pp. 1334–1340. AAAI Press (2007)
Gomes, D., Cruz, D., Miranda, J., Costa, M., Fontes, S.: Search the past with the portuguese web archive. In: Proceedings of the 22nd International Conference on World Wide Web (WWW 2013), Rio de Janeiro, Brazil, 13–17 May 2013, pp. 321–324 (2013)
Hausner, P., Aumiller, D., Gertz, M.: Time-centric exploration of court documents. In: Proceedings of the 3rd International Workshop on Narrative Extraction from Texts (Text2Story20@ECIR 2020), Lisbon, Portugal, 14 April 2020, pp. 31–37 (2020)
Hausner, P., Aumiller, D., Gertz, M.: TiCCo: time-centric content exploration. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM 2020), Virtual Event, Ireland, 19–23 October 2020, pp. 3413–3416. ACM Press (2020)
Jatowt, A., Campos, R., Bhowmick, S., Doucet, A.: Document in context of time (DICT): system that provides temporal context for analyzing old documents. In: Proceedings of the 28th ACM International Conference on Knowledge Management (CIKM 2019), Beijing, China, 03–07 November 2019, pp. 2869–2872. ACM Press (2019)
Kanhabua, N., Blanco, R., Nørvåg, K.: Temporal information retrieval. Found. Trends Inf. Retrieval 9(2), 91–208 (2015)
Kanhabua, N., Romano, S., Stewart, A.: Identifying relevant temporal expressions for real-world events. In: Proceedings of the Workshop on Time-aware Information Access (TAIA’12@SIGIR’12), Portland, USA, 12–16 August 2012 (2012)
Martinez-Alvarez, M., et al.: First international workshop on recent trends in news information retrieval (NewsIR’16). In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 878–882. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_85
Pasquali, A., Mangaravite, V., Campos, R., Jorge, A.M., Jatowt, A.: Interactive system for automatically generating temporal narratives. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11438, pp. 251–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_34
Strötgen, J., Gertz, M.: Multilingual and cross-domain temporal tagging. Lang. Resour. Eval. 47(2), 269–298 (2013)
Strötgen, J., Alonso, O., Gertz, M.: Identification of top relevant temporal expressions in documents. In: Proceedings of the 2nd Temporal Web Analytics Workshop (TempWeb12@WWW’12), Lyon, France, 17 April 2012, pp. 33–40 (2012)
Tran, G., Alrifai, M., Herder, E.: Timeline summarization from relevant headlines. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 245–256. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3_26
Acknowledgements
Ricardo Campos and Alípio Jorge were financed by the ERDF – European Regional Development Fund through the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project PTDC/CCI-COM/31857/2017 (NORTE-01-0145-FEDER-03185). This funding fits under the research line of the Text2Story project. Célia Nunes was financed by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through projects UIDB/00212/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Campos, R. et al. (2021). Time-Matters: Temporal Unfolding of Texts. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-72240-1_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72239-5
Online ISBN: 978-3-030-72240-1
eBook Packages: Computer ScienceComputer Science (R0)