[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

IoT Applications in Healthcare

  • Chapter
  • First Online:
Internet of Things

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 305))

  • 1545 Accesses

Abstract

This chapter aims to review IoT applications in the healthcare domain that are representative and active in practice and research. The chapter introduces the existing IoT products in the healthcare market; reviews the studies on developing, using, and improving IoT healthcare applications; and presents and discusses the recent trend and focus of IoT healthcare applications. First, the chapter describes a general picture of IoT healthcare applications. And then, the chapter studies IoT healthcare applications in three scenarios:

  1. 1.

    Acute disease care. Three applications are introduced to show how IoT benefits acute care: vital sign monitoring, acute care telemedicine, and IoT-based detection and control of infectious diseases.

  2. 2.

    Chronic disease care. The chapter focuses on remote health monitoring used for patients with chronic diseases, especially patients with Alzheimer’s disease, diabetes, and heart failure.

  3. 3.

    Self-health management. The chapter pays attention to the most common representative device for self-health management, smartwatches and analyzes the two main functions of smartwatches on self-health management, sleep monitoring and exercise monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 12.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk environment, health and safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95.

    Article  Google Scholar 

  2. Holdowsky, J., Mahto, M., Raynor, M. E., & Cotteleer, M. (2015). Inside the internet of things (IoT): A primer on the technologies building the IoT. New York, Deloitte University Press.

    Google Scholar 

  3. Burgess, M. (2018). What is the Internet of Things? WIRED explains. www.wired.co.uk/article/internet-of-things-what-is-explained-iot

  4. Grand View Research. (2019). IoT in healthcare market worth $534.3 billion by 2025|CAGR: 19.9%. https://www.grandviewresearch.com/press-release/global-iot-in-healthcare-market. Visit on 30 Aug 2020.

  5. The World Health Organization (WHO). (2020). Health service. https://www.who.int/topics/health_services/en/. Visit on 30 Aug 2020.

  6. Ramachandran, G., Kannan, S., Sheela, T., Malarvizhi, A., Murali, P. M., & Sureshkumar, G. (2019). Internet of things in healthcare. Research & Reviews: Journal of Medical Science and Technology, 8(1), 10–12.

    Google Scholar 

  7. Muhammad, G., Rahman, S. M. M., Alelaiwi, A., & Alamri, A. (2017). Smart health solution integrating IoT and cloud: A case study of voice pathology monitoring. IEEE Communications Magazine, 55(1), 69–73.

    Article  Google Scholar 

  8. Varshney, U., & Chang, C. K. (2016). Smart health and well-being. Computer, 49(11), 11–13.

    Article  Google Scholar 

  9. Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Article  Google Scholar 

  10. Balakrishna, S., & Thirumaran, M. (2020). Semantic interoperability in IoT and big data for health care: A collaborative approach. In Handbook of data science approaches for biomedical engineering (pp. 185–220). Cambridge, MA: Academic Press.

    Chapter  Google Scholar 

  11. Laplante, P. A., & Laplante, N. L. (2015). A structured approach for describing healthcare applications for the Internet of Things. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (pp. 621–625). Milan, Italy.

    Chapter  Google Scholar 

  12. Laplante, P. A., & Laplante, N. L. (2016). The internet of things in healthcare: Potential applications and challenges. It Professional, 18(3), 2–4.

    Article  Google Scholar 

  13. Baker, S. B., Xiang, W., & Atkinson, I. (2017). Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access, 5, 26521–26544.

    Article  Google Scholar 

  14. Darshan, K. R., & Anandakumar, K. R. (2015). A comprehensive review on usage of Internet of Things (IoT) in healthcare system. In 2015 international conference on emerging research in electronics, computer science and technology (pp. 132–136). Mandya, India.

    Google Scholar 

  15. Dias, D., & Paulo Silva Cunha, J. (2018). Wearable health devices – Vital sign monitoring, systems and technologies. Sensors, 18(8), 2414.

    Article  Google Scholar 

  16. Gill, S. S., Tuli, S., Xu, M., Singh, I., Singh, K. V., Lindsay, D., et al. (2019). Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet of Things, 100118, 1–26.

    Google Scholar 

  17. Lee, J., Hong, M., & Ryu, S. (2015). Sleep monitoring system using kinect sensor. International Journal of Distributed Sensor Networks, 11(10), 875371.

    Google Scholar 

  18. Manikandan, R., Patan, R., Gandomi, A. H., Sivanesan, P., & Kalyanaraman, H. (2020). Hash polynomial two factor decision tree using IoT for smart health care scheduling. Expert Systems with Applications, 141, 112924.

    Article  Google Scholar 

  19. Mozaffari, N., Rezazadeh, J., Farahbakhsh, R., Yazdani, S., & Sandrasegaran, K. (2019). Practical fall detection based on IoT technologies: A survey. Internet of Things, 100124, 1–16.

    Google Scholar 

  20. Ukil, A., Bandyoapdhyay, S., Puri, C., & Pal, A. (2016). IoT healthcare analytics: The importance of anomaly detection. In 2016 IEEE 30th international conference on advanced information networking and applications (pp. 994–997). Crans-Montana, Switzerland.

    Google Scholar 

  21. Yacchirema, D., Sarabia-Jácome, D., Palau, C. E., & Esteve, M. (2018). System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing, 50, 25–40.

    Article  Google Scholar 

  22. Odell, M. (2010). Are early warning scores the only way to rapidly detect and manage deterioration? Nursing Times, 106(8), 24–26.

    Google Scholar 

  23. Weenk, M., Koeneman, M., van de Belt, T. H., Engelen, L. J., van Goor, H., & Bredie, S. J. (2019). Wireless and continuous monitoring of vital signs in patients at the general ward. Resuscitation, 136, 47–53.

    Article  Google Scholar 

  24. Gabayan, G. Z., Gould, M. K., Weiss, R. E., Derose, S. F., Chiu, V. Y., & Sarkisian, C. A. (2017). Emergency department vital signs and outcomes after discharge. Academic Emergency Medicine, 24(7), 846–854.

    Article  Google Scholar 

  25. Cretikos, M. A., Bellomo, R., Hillman, K., Chen, J., Finfer, S., & Flabouris, A. (2008). Respiratory rate: The neglected vital sign. Medical Journal of Australia, 188(11), 657–659.

    Article  Google Scholar 

  26. Carreiro, S., Wittbold, K., Indic, P., Fang, H., Zhang, J., & Boyer, E. W. (2016). Wearable biosensors to detect physiologic change during opioid use. Journal of Medical Toxicology, 12(3), 255–262.

    Article  Google Scholar 

  27. Gao, T., Greenspan, D., Welsh, M., Juang, R. R., & Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, China, 2005 (pp. 102–105).

    Google Scholar 

  28. Pimentel, M. A., Charlton, P. H., & Clifton, D. A. (2015). Probabilistic estimation of respiratory rate from wearable sensors. In Wearable electronics sensors (pp. 241–262). Cham: Springer.

    Chapter  Google Scholar 

  29. Vsee. (2020). What is telemedicine?. https://vsee.com/what-is-telemedicine/#1. Visit on 30 Aug 2020.

  30. Weinstein, R. S., Lopez, A. M., Joseph, B. A., Erps, K. A., Holcomb, M., Barker, G. P., & Krupinski, E. A. (2014). Telemedicine, telehealth, and mobile health applications that work: Opportunities and barriers. The American Journal of Medicine, 127(3), 183–187.

    Article  Google Scholar 

  31. Armfield, N. R., & Donovan, T. (2016). Acute care telemedicine. In The E-medicine, E-health, M-health, telemedicine, and telehealth handbook (pp. 597–618). Boca Raton.

    Google Scholar 

  32. Johansson, T., & Wild, C. (2010). Telemedicine in acute stroke management: Systematic review. International Journal of Technology Assessment in Health Care, 26(2), 149–155.

    Article  Google Scholar 

  33. Wallace, D. L., Jones, S. M., Milroy, C., & Pickford, M. A. (2008). Telemedicine for acute plastic surgical trauma and burns. Journal of Plastic, Reconstructive & Aesthetic Surgery, 61(1), 31–36.

    Article  Google Scholar 

  34. Lieberman, J. (2008). How telemedicine is aiding prompt ECG diagnosis in primary care. British Journal of Community Nursing, 13(3), 123–126.

    Article  Google Scholar 

  35. Lilly, C. M., & Thomas, E. J. (2010). Tele-ICU: Experience to date. Journal of Intensive Care Medicine, 25(1), 16–22.

    Article  Google Scholar 

  36. Philips Healthcare. (2017). Philips healthcare whitepaper: Calculating the value of a Tele-ICU investment. https://www.usa.philips.com/healthcare/resources/landing/whatisteleicu. Visit on 30 Aug 2020.

  37. Silverman, L. (2018). Interview with Lou Silverman, Chairman and CEO of Advanced ICU Care: The role of acute care telemedicine in hospitals. https://thejournalofmhealth.com/the-role-of-acute-care-telemedicine-in-hospitals/. Visit on 30 Aug 2020.

  38. Khunlertkit, A., & Carayon, P. (2013). Contributions of tele-intensive care unit (Tele-ICU) technology to quality of care and patient safety. Journal of Critical Care, 28(3), 315–3e1.

    Article  Google Scholar 

  39. Lilly, C. M., Cody, S., Zhao, H., Landry, K., Baker, S. P., McIlwaine, J., et al. (2011). Hospital mortality, length of stay, and preventable complications among critically ill patients before and after tele-ICU reengineering of critical care processes. JAMA, 305(21), 2175–2183.

    Article  Google Scholar 

  40. Yoo, B. K., Kim, M., Sasaki, T., Melnikow, J., & Marcin, J. P. (2016). Economic evaluation of telemedicine for patients in ICUs. Critical Care Medicine, 44(2), 265–274.

    Article  Google Scholar 

  41. Yoo, B. K., Kim, M., Sasaki, T., Hoch, J. S., & Marcin, J. P. (2018). Selected use of telemedicine in intensive care units based on severity of illness improves cost-effectiveness. Telemedicine and e-Health, 24(1), 21–36.

    Article  Google Scholar 

  42. Shah, H. (2017). How IoT can help detect and control infectious disease outbreaks in real-time. https://www.idigitalhealth.com/news/how-internet-of-things-helps-detect-and-control-infectious-disease-outbreaks-in-realtime. Visit on 30 Aug 2020.

  43. Wood, C. S., Thomas, M. R., Budd, J., Mashamba-Thompson, T. P., Herbst, K., Pillay, D., et al. (2019). Taking connected mobile-health diagnostics of infectious diseases to the field. Nature, 566(7745), 467–474.

    Article  Google Scholar 

  44. Zhu, H., Podesva, P., Liu, X., Zhang, H., Teply, T., Xu, Y., et al. (2020). IoT PCR for pandemic disease detection and its spread monitoring. Sensors and Actuators B: Chemical, 303, 127098.

    Article  Google Scholar 

  45. Sareen, S., Sood, S. K., & Gupta, S. K. (2017). Secure internet of things-based cloud framework to control zika virus outbreak. International Journal of Technology Assessment in Health Care, 33(1), 11–18.

    Article  Google Scholar 

  46. Sood, S. K., & Mahajan, I. (2017). Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus. Computers in Industry, 91, 33–44.

    Article  Google Scholar 

  47. Bai, L., Yang, D., Wang, X., Tong, L., Zhu, X., Bai, C., & Powell, C. A. (2020). Chinese experts’ consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019. Clinical eHealth, 3, 7–15.

    Article  Google Scholar 

  48. Kaushalya, S. A. D. S., Kulawansa, K. A. D. T., & Firdhous, M. F. M. (2019). Internet of things for epidemic detection: A critical review. In Advances in computer communication and computational sciences (pp. 485–495). Springer, Berlin.

    Chapter  Google Scholar 

  49. Deloitte. (2015). No appointment necessary: How the IoT and patient-generated data can unlock health care value. https://www2.deloitte.com/us/en/insights/focus/internet-of-things/iot-in-health-care-industry.html. Visit on 30 Aug 2020.

  50. Blount, M., Batra, V. M., Capella, A. N., Ebling, M. R., Jerome, W. F., Martin, S. M., et al. (2007). Remote health-care monitoring using Personal Care Connect. IBM Systems Journal, 46(1), 95–113.

    Article  Google Scholar 

  51. Cheng, H. T., & Zhuang, W. (2010). Bluetooth-enabled in-home patient monitoring system: Early detection of Alzheimer’s disease. IEEE Wireless Communications, 17(1), 74–79.

    Article  Google Scholar 

  52. Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2018). Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Computing, 21(1), 681–690.

    Article  Google Scholar 

  53. Al-khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., & Waraich, A. (2019). Remote health monitoring of elderly through wearable sensors. Multimedia Tools and Applications, 78(17), 24681–24706.

    Article  Google Scholar 

  54. Faria, S. M., Fernandes, T. R., & Perdigoto, F. S. (2008). Mobile web server for elderly people monitoring. In 2008 IEEE international symposium on consumer electronics (pp. 1–4). Las Vegas, USA.

    Google Scholar 

  55. Elfaki, A. O., & Alotaibi, M. (2018). The role of M-health applications in the fight against Alzheimer’s: Current and future directions. Mhealth, 4(32), 1–13.

    Google Scholar 

  56. Gia, T. N., Ali, M., Dhaou, I. B., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2017). IoT-based continuous glucose monitoring system: A feasibility study. Procedia Computer Science, 109, 327–334.

    Article  Google Scholar 

  57. Katalenich, B., Shi, L., Liu, S., Shao, H., McDuffie, R., Carpio, G., et al. (2015). Evaluation of a remote monitoring system for diabetes control. Clinical Therapeutics, 37(6), 1216–1225.

    Article  Google Scholar 

  58. Al-Taee, M. A., Al-Nuaimy, W., Al-Ataby, A., Muhsin, Z. J., & Abood, S. N. (2015, November). Mobile health platform for diabetes management based on the Internet-of-Things. In 2015 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT-2015) (pp. 1–5). The Dead Sea, Jordan.

    Google Scholar 

  59. Bui, A. L., Horwich, T. B., & Fonarow, G. C. (2011). Epidemiology and risk profile of heart failure. Nature Reviews Cardiology, 8(1), 30.

    Article  Google Scholar 

  60. Bashi, N., Karunanithi, M., Fatehi, F., Ding, H., & Walters, D. (2017). Remote monitoring of patients with heart failure: An overview of systematic reviews. Journal of Medical Internet Research, 19(1), e18.

    Article  Google Scholar 

  61. Brahmbhatt, H. D., & Cowie, R. M. (2019). Remote management of heart failure: An overview of telemonitoring technologies. Cardiac Failure Review, 5(2), 86–92.

    Article  Google Scholar 

  62. Pecchia, L., Melillo, P., & Bracale, M. (2010). Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Transactions on Biomedical Engineering, 58(3), 800–804.

    Article  Google Scholar 

  63. Yang, J., Xiao, W., Lu, H., & Barnawi, A. (2020). Wireless high-frequency NLOS monitoring system for heart disease combined with hospital and home. Future Generation Computer Systems, 110, 772–780.

    Google Scholar 

  64. Suh, M. K., Evangelista, L. S., Chen, V., Hong, W. S., Macbeth, J., Nahapetian, A., et al. (2010). WANDA B.: Weight and activity with blood pressure monitoring system for heart failure patients. In 2010 IEEE international symposium on “a world of wireless, mobile and multimedia networks” (pp. 1–6). Montreal, QC, Canada.

    Google Scholar 

  65. Lan, M., Samy, L., Alshurafa, N., Suh, M. K., Ghasemzadeh, H., Macabasco-O’Connell, A., & Sarrafzadeh, M. (2012). Wanda: An end-to-end remote health monitoring and analytics system for heart failure patients. In The conference on wireless health (pp. 1–8). Bethesda, Maryland, USA.

    Google Scholar 

  66. Suh, M. K., Chen, C. A., Woodbridge, J., Tu, M. K., Kim, J. I., Nahapetian, A., et al. (2011). A remote patient monitoring system for congestive heart failure. Journal of Medical Systems, 35(5), 1165–1179.

    Article  Google Scholar 

  67. Mahoney, E. L., & Mahoney, D. F. (2010). Acceptance of wearable technology by people with Alzheimer’s disease: Issues and accommodations. American Journal of Alzheimer’s Disease & Other Dementias, 25(6), 527–531.

    Article  Google Scholar 

  68. Chen, X. A., Grossman, T., Wigdor, D. J., & Fitzmaurice, G. (2014). Duet: Exploring joint interactions on a smart phone and a smart watch. In The SIGCHI conference on human factors in computing systems (pp. 159–168). Toronto, Canada.

    Chapter  Google Scholar 

  69. Reeder, B., & David, A. (2016). Health at hand: A systematic review of smart watch uses for health and wellness. Journal of Biomedical Informatics, 63, 269–276.

    Article  Google Scholar 

  70. Lutze, R., & Waldhor, K. (2015). A smartwatch software architecture for health hazard handling for elderly people. In 2015 international conference on healthcare informatics (pp. 356–361). Dallas, Texas, USA.

    Chapter  Google Scholar 

  71. Bhattacharya, S., & Lane, N. D. (2016). From smart to deep: Robust activity recognition on smartwatches using deep learning. In 2016 IEEE international conference on pervasive computing and communication workshops (pp. 1–6). Sydney, Australia.

    Google Scholar 

  72. Dibia, V. (2016). Foqus: A smartwatch application for individuals with adhd and mental health challenges. In The 18th international ACM SIGACCESS conference on computers and accessibility (pp. 311–312). Reno, Nevada, United States.

    Chapter  Google Scholar 

  73. Pombo, N., & Garcia, N. M. (2016). ubiSleep: An ubiquitous sensor system for sleep monitoring. In 2016 IEEE 12th international conference on wireless and mobile computing, networking and communications (pp. 1–4). New York, USA.

    Google Scholar 

  74. Sun, X., Qiu, L., Wu, Y., Tang, Y., & Cao, G. (2017). Sleepmonitor: Monitoring respiratory rate and body position during sleep using smartwatch. In: The ACM on interactive, mobile, wearable and ubiquitous technologies, 1(3): 1–22.

    Google Scholar 

  75. Chang, L., Lu, J., Wang, J., Chen, X., Fang, D., Tang, Z., et al. (2018). SleepGuard: Capturing rich sleep information using smartwatch sensing data. The ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 1–34.

    Article  Google Scholar 

  76. Roomkham, S., Lovell, D., Cheung, J., & Perrin, D. (2018). Promises and challenges in the use of consumer-grade devices for sleep monitoring. IEEE Reviews in Biomedical Engineering, 11, 53–67.

    Article  Google Scholar 

  77. Rosenberger, M. E., Buman, M. P., Haskell, W. L., McConnell, M. V., & Carstensen, L. L. (2016). 24 hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Medicine and Science in Sports and Exercise, 48(3), 457.

    Article  Google Scholar 

  78. Shen, C., Ho, B. J., & Srivastava, M. (2017). Milift: Efficient smartwatch-based workout tracking using automatic segmentation. IEEE Transactions on Mobile Computing, 17(7), 1609–1622.

    Article  Google Scholar 

  79. Shahmohammadi, F., Hosseini, A., King, C. E., & Sarrafzadeh, M. (2017). Smartwatch based activity recognition using active learning. In 2017 IEEE/ACM international conference on connected health: Applications, systems and engineering technologies (pp. 321–329). Philadelphia, Pennsylvania, USA.

    Google Scholar 

  80. Jiang, W., & Yin, Z. (2015). Human activity recognition using wearable sensors by deep convolutional neural networks. In The 23rd ACM international conference on multimedia (pp. 1307–1310). Brisbane, Australia.

    Chapter  Google Scholar 

  81. Um, T. T., Babakeshizadeh, V., & Kulić, D. (2017). Exercise motion classification from large-scale wearable sensor data using convolutional neural networks. In 2017 IEEE/RSJ international conference on intelligent robots and systems (pp. 2385–2390). Vancouver, Canada.

    Google Scholar 

  82. Kwon, M. C., & Choi, S. (2018). Recognition of daily human activity using an artificial neural network and smartwatch. Wireless Communications and Mobile Computing, 2018.

    Google Scholar 

  83. Hoilett, O. S., Twibell, A. M., Srivastava, R., & Linnes, J. C. (2018). Kick LL: A smartwatch for monitoring respiration and heart rate using photoplethysmography. In 2018 40th annual international conference of the IEEE engineering in medicine and biology society (pp. 3821–3824). Honolulu, Hawaii, USA.

    Google Scholar 

  84. Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017). Blockchain for IoT security and privacy: The case study of a smart home. In 2017 IEEE international conference on pervasive computing and communications workshops (pp. 618–623). Kona, Big Island, HI, USA.

    Google Scholar 

  85. Bröring, A., Schmid, S., Schindhelm, C. K., Khelil, A., Käbisch, S., Kramer, D., et al. (2017). Enabling IoT ecosystems through platform interoperability. IEEE Software, 34(1), 54–61.

    Article  Google Scholar 

  86. Alamri, A. (2018). Ontology middleware for integration of IoT healthcare information systems in EHR systems. Computers, 7(51), 1–15.

    Google Scholar 

  87. Brous, P., Janssen, M., & Herder, P. (2020). The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations. International Journal of Information Management, 51, 101952.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuhong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, Q., Zhao, Q. (2021). IoT Applications in Healthcare. In: García Márquez, F.P., Lev, B. (eds) Internet of Things. International Series in Operations Research & Management Science, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-70478-0_7

Download citation

Publish with us

Policies and ethics