[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evaluation of Abductive Hypotheses: A Logical Perspective

  • Living reference work entry
  • First Online:
Handbook of Abductive Cognition

Abstract

There are many answers to the question “What is abduction?”. In fact, there are too many answers to this question. This paper does not add to this multitude. Instead, after outlining the landscape of conceptual frameworks for abduction, the author advocates for a specific shift in perspective, resulting in a focus on the use of abductive reasoning instead of its definition. If the practicality of abduction is taken seriously, the evaluation of hypotheses becomes an intrinsic part of abductive reasoning. While not obvious from a philosophical point of view, this stance is quite natural from the computational one: aiming at computational tractability of abduction must be inherently connected with limiting the space of possible solutions, ultimately with searching for the good ones, if not the best. Hence, making the criteria for evaluating abductive hypotheses precise and workable becomes one of the crucial issues in modeling abduction. Thus, this chapter addresses the issue of criteria employed to evaluate abductive hypotheses expressed in terms of formal logical systems and then presents three approaches to how such criteria may be put to work and how the evaluation process relates to the generation of abductive hypotheses. Based on analytic tableaux, the first one exemplifies a strict separation of generation and evaluation of hypotheses. The second, the Abductive Question-Answer System, rooted in a logic of questions, illustrates the opposite idea of generation and evaluation being inseparably intertwined. Finally, the mixed case allows for computational tractability of evaluating large sets of abductive hypotheses, in which hypotheses are generated using the Synthetic Tableaux Method and evaluation is based on reduction techniques and multicriterial dominance relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aliseda, A. (1997). Seeking Explanations: Abduction in Logic, Philosophy of Science and Artificial Intelligence. Institute for Logic, Language and Computation, Amsterdam.

    Google Scholar 

  • Aliseda, A. (2006). Abductive Reasoning. Logical Investigations into Discovery and Explanation. Springer.

    MATH  Google Scholar 

  • Bylander, T., Allemang, D., Tanner, M. C., & Josephson, J. R. (1991). The computational complexity of abduction. Artificial Intelligence, 49(1), 25–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Chlebowski, S., & Gajda, A. (2017). Abductive question-answer system (AQAS) for classical propositional logic. In H. Christiansen, H. Jaudoin, P. Chountas, T. Andreasen, & H. L. Larsen (Eds.), Lecture Notes in Computer Science (Proceedings of Flexible Query Answering Systems 12th International Conference, vol. 10333, pp. 3–14). Springer.

    Google Scholar 

  • Chlebowski, S., Gajda, A., & Urbański, M. (2022). An abductive question-answer system for the minimal logic of formal inconsistency mbC. Studia Logica, 110, 479–509.

    Article  MathSciNet  MATH  Google Scholar 

  • d’Avila Garcez, A. S., Gabbay, D. M., Ray, O., & Woods, J. (2007). Abductive reasoning in neural-symbolic systems. Topoi, 26, 37–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Denecker, M., & Kakas, A. C. (2002). Abduction in logic programming. In A. C. Kakas & F. Sadri (Eds.), Computational Logic: Logic Programming and Beyond (pp. 402–436). Springer.

    MATH  Google Scholar 

  • Doumpos, M., & Grigoroudis, E. (2013). Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications. Wiley.

    Book  MATH  Google Scholar 

  • Douven, I. (2017). Abduction. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2017 edition.

    Google Scholar 

  • Dunham, B., & Wang, H. (1976). Towards feasible solutions of the tautology problem. Annals of Mathematical Logic, 10, 117–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott, M. (2006). Multicriteria Optimization. Springer.

    MATH  Google Scholar 

  • Etter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the ACM, 42(1), 3–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabbay, D. M., & Woods, J. (2005). The Reach of Abduction. Insight and Trial. Elsevier.

    MATH  Google Scholar 

  • Hintikka, J. (1999). What is abduction? The fundamental problem of contemporary epistemology. In Inquiry as Inquiry: A Logic of Scientific Discovery. Jaakko Hintikka Selected Papers (Vol. V). Springer.

    Google Scholar 

  • Hoyningen-Huene, P. (1987). On the distinction between the ‘context’ of discovery and the ‘context’ of justification. Epistemologia, 10, 81–88.

    Google Scholar 

  • Josephson, J. R. (1998). Abduction-prediction model of scientific inference reflected in a prototype system for model-based diagnosis. Philosophica, 61(1), 9–17.

    Article  MathSciNet  Google Scholar 

  • Josephson, J. R. (2000). Smart inductive generalizations are abductions. In P. A. Flach & A. C. Kakas (Eds.), Abduction and Induction. Essays on Their Relation and Integration (pp. 31–44). Kluwer Academic Publishers.

    Google Scholar 

  • Komosinski, M., Kups, A., Leszczyńska-Jasion, D., & Urbański, M. (2014). Identifying efficient abductive hypotheses using multicriteria dominance relation. ACM Transactions on Computational Logic, 15(4), 28:1–28:20.

    Google Scholar 

  • Komosinski, M., Kups, A., & Urbański, M. (2012). Multi-criteria evaluation of abductive hypotheses: Towards efficient optimization in proof theory. In Proceedings of the 18th International Conference on Soft Computing (pp. 320–325).

    Google Scholar 

  • Komosinski, M., & Ulatowski, S. (2014). Framsticks website. http://www.framsticks.com/.

    Google Scholar 

  • Kuhn, T. (1962). The Structure of Scientific Revolutions. University of Chicago Press.

    Google Scholar 

  • Kuipers, T. A. F. (2004). Inference to the best theory, rather than inference to the best explanation. Kinds of abduction and induction. In F. Stadler (Ed.), Induction and Deduction in the Sciences (pp. 25–51). Kluwer Academic Publishers.

    Google Scholar 

  • Leszczyńska-Jasion, D., & Chlebowski, S. (2019). Synthetic tableaux with unrestricted cut for first-order theories. Axioms, 8(4), 133.

    Article  MATH  Google Scholar 

  • Leszczyńska-Jasion, D., Urbański, M., & Wiśniewski, A. (2013). Socratic trees. Studia Logica, 101, 959–986.

    Article  MathSciNet  MATH  Google Scholar 

  • Magnani, L. (2009). Abductive Cognition. The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning. Springer.

    Book  MATH  Google Scholar 

  • Minnameier, G. (2017). Form of abduction and an inferential taxonomy. In L. Magnani & T. Bertolotti (Ed.), Springer Handbook of Model-Based Science (pp. 175–195). Springer.

    Google Scholar 

  • Pace, G. (1584). Aristotelis Stagiritae peripateticorum principis organum. Hoc est, libri omnes ad Logicam pertinentes, Graece et Latine. Guillelmus Laimarius. https://doi.org/10.3931/e-rara-24498.

  • Peirce, C. S. (1909). Meaning Preface. MS [R] 637. From the Commens Bibliography. http://www.commens.org/bibliography/manuscript/peirce-charles-s-1909-meaning-preface-ms-r-637.

    Google Scholar 

  • Peirce, C. S. (1931–1958). Collected Works. C. Hartshorne, P. Weiss, & A. W. Burks, (Eds.). Harvard University Press.

    Google Scholar 

  • Proni, G. (2016). Is there abduction in aristotle? Peirce, eco, and some further remarks. OCULA, 16, 1–14.

    Article  Google Scholar 

  • Reichenbach, H. (1938). Experience and Prediction. University of Chicago Press.

    MATH  Google Scholar 

  • Schurz, G. (2017). Patterns of abductive inference. In L. Magnani & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science (pp. 151–173). Springer.

    Google Scholar 

  • Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-Conclusion Logic. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Smullyan, R. M. (1968). First-Order Logic. Berlin/Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Thagard, P. (2007). Abductive inference: From philosophical analysis to neural mechanisms. In A. Feeney & E. Heit (Eds.), Inductive Reasoning: Cognitive, Mathematical, and Neuroscientific Approaches (pp. 226–247). Cambridge University Press.

    Google Scholar 

  • Thagard, P., & Shelley, C. P. (1997). Abductive reasoning: Logic, visual thinking and coherence. In M.-L. Dalla Chiara, K. Doets, D. Mundici, & J. van Benthem (Eds.), Logic and Scientific Methods (pp. 413–427). Kluwer Academic Press.

    Google Scholar 

  • Urbański, M. (2001). Remarks on synthetic tableaux for Classical Propositional Calculus. Bulletin of the Section of Logic, 30(4), 194–204.

    MathSciNet  MATH  Google Scholar 

  • Urbański, M. (2004). How to synthesize a paraconsistent negation. The case of CLuN. Logique et Analyse, 185–188, 319–333.

    MathSciNet  MATH  Google Scholar 

  • Urbański, M. (2009). Rozumowania abdukcyjne. Modele i procedury Abductive reasoning. Models and procedures. Adam Mickiewicz University Press.

    Google Scholar 

  • Urbański, M., & Grzelak, J. (2019). On two simple models for one simple game: Guess Who? Inferential Erotetic Logic, and situational semantics. In M. Urbański, T. Skura, & P. Łupkowski (Eds.), Reasoning: Logic, Cognition, Games (pp. 1–18). College Publications.

    Google Scholar 

  • Urbański, M., & Klawiter, A. (2018). Abduction: Some conceptual issues. Logic and Logical Philosophy, 27(4), 583–597.

    Article  MathSciNet  Google Scholar 

  • Wiśniewski, A. (2013). Logic and sets of situations. In Essays in Logical Philosophy. Berlin: LiT Verlag.

    Google Scholar 

  • Woods, J. (2017). Reorienting the logic of abduction. In L. Magnani & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science (pp. 137–150). Springer.

    Google Scholar 

  • Żelechowska, D., Zyluk, N., & Urbański, M. (2020). Find Out: A new method to study abductive reasoning in empirical research. International Journal of Qualitative Methods, 19, 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this paper was supported by the National Science Centre, Poland (DEC-2013/10/E/HS1/00172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Urbański .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Urbański, M. (2022). Evaluation of Abductive Hypotheses: A Logical Perspective. In: Magnani, L. (eds) Handbook of Abductive Cognition. Springer, Cham. https://doi.org/10.1007/978-3-030-68436-5_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68436-5_23-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68436-5

  • Online ISBN: 978-3-030-68436-5

  • eBook Packages: Living Reference Intelligent Technologies and RoboticsReference Module Computer Science and Engineering

Publish with us

Policies and ethics