[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

IVIST: Interactive Video Search Tool in VBS 2021

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12573))

Included in the following conference series:

  • 2006 Accesses

Abstract

This paper presents a new version of the Interactive VIdeo Search Tool (IVIST), a video retrieval tool, for the participation of the Video Browser Showdown (VBS) 2021. In the previous IVIST (VBS 2020), there were core functions to search for videos practically, such as object detection, scene-text recognition, and dominant-color finding. Including core functions, we newly supplement other helpful functions to deal with finding videos more effectively: action recognition, place recognition, and description searching methods. These features are expected to enable a more detailed search, especially for human motion and background description which cannot be covered by the previous IVIST system. Furthermore, the user interface has been enhanced in a more user-friendly way. With these enhanced functions, a new version of IVIST can be practical and widely-used for actual users.

Y. Lee and H. Choi—Both authors have equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park, S., Song, J., Park, M., Ro, Y.M.: IVIST: interactive video search tool in VBS 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 809–814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_74

    Chapter  Google Scholar 

  2. Cobârzan, C., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimed. Tools Appl. 76(4), 5539–5571 (2016). https://doi.org/10.1007/s11042-016-3661-2

    Article  Google Scholar 

  3. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNS retrace the history of 2D CNNS and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  4. Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700 human action dataset (2019). arXiv preprint arXiv:1907.06987

  5. Abu-El-Haija, S., et al.: Youtube-8m: a large-scale video classification benchmark (2016). arXiv preprint arXiv:1609.08675

  6. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild (2012). arXiv preprint arXiv:1212.0402

  7. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  8. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  9. Kataoka, H., Wakamiya, T., Hara, K., Satoh, Y.: Would mega-scale datasets further enhance spatiotemporal 3D CNNs? (2020). arXiv preprint arXiv:2004.04968

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  13. Rossetto, L., Schuldt, H., Awad, G., Butt, Asad A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29

    Chapter  Google Scholar 

  14. Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 15(1), 1–18 (2019)

    Article  Google Scholar 

  15. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision (2019). arXiv preprint arXiv:1906.06972

  16. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement (2018). arXiv preprint arXiv:1808.04560

  17. Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36(4), 144-1 (2017)

    Article  Google Scholar 

  18. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)

    Article  MathSciNet  Google Scholar 

  19. Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 219–224 (2015)

    Google Scholar 

  20. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, Y., Choi, H., Park, S., Ro, Y.M. (2021). IVIST: Interactive Video Search Tool in VBS 2021. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics