Abstract
This paper presents a new version of the Interactive VIdeo Search Tool (IVIST), a video retrieval tool, for the participation of the Video Browser Showdown (VBS) 2021. In the previous IVIST (VBS 2020), there were core functions to search for videos practically, such as object detection, scene-text recognition, and dominant-color finding. Including core functions, we newly supplement other helpful functions to deal with finding videos more effectively: action recognition, place recognition, and description searching methods. These features are expected to enable a more detailed search, especially for human motion and background description which cannot be covered by the previous IVIST system. Furthermore, the user interface has been enhanced in a more user-friendly way. With these enhanced functions, a new version of IVIST can be practical and widely-used for actual users.
Y. Lee and H. Choi—Both authors have equally contributed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Park, S., Song, J., Park, M., Ro, Y.M.: IVIST: interactive video search tool in VBS 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 809–814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_74
Cobârzan, C., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimed. Tools Appl. 76(4), 5539–5571 (2016). https://doi.org/10.1007/s11042-016-3661-2
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNS retrace the history of 2D CNNS and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)
Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700 human action dataset (2019). arXiv preprint arXiv:1907.06987
Abu-El-Haija, S., et al.: Youtube-8m: a large-scale video classification benchmark (2016). arXiv preprint arXiv:1609.08675
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild (2012). arXiv preprint arXiv:1212.0402
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)
Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)
Kataoka, H., Wakamiya, T., Hara, K., Satoh, Y.: Would mega-scale datasets further enhance spatiotemporal 3D CNNs? (2020). arXiv preprint arXiv:2004.04968
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Rossetto, L., Schuldt, H., Awad, G., Butt, Asad A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29
Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 15(1), 1–18 (2019)
Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision (2019). arXiv preprint arXiv:1906.06972
Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement (2018). arXiv preprint arXiv:1808.04560
Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36(4), 144-1 (2017)
Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)
Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 219–224 (2015)
Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, Y., Choi, H., Park, S., Ro, Y.M. (2021). IVIST: Interactive Video Search Tool in VBS 2021. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-67835-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67834-0
Online ISBN: 978-3-030-67835-7
eBook Packages: Computer ScienceComputer Science (R0)