Abstract
The huge amount of biological literature, which daily increases, represents a strategic resource to automatically extract and gain knowledge concerning relations among biological elements. Knowledge Networks are helpful tools in the context of biological knowledge discovery and modeling. Here we introduce a novel system called NETME, which, starting from a set of fulltext obtained from PubMed, through an easy-to-use web interface, interactively extracts a group of biological elements stored into a selected list of ontological databases and then synthesizes a network with inferred relations among such elements. The results clearly show that our tool is capable to efficiently and efficaciously infer reliable functional biological networks.
A. Muscolino and A. Di Maria—Equal contributor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barabási, A., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2010)
Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J., Von Mering, C.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45(D1), D362–D368 (2016)
Scott Himmelstein, D., Lizee, A., Hessler, C., Brueggeman, L., Chen, S.L., Hadley, D., Green, A., Khankhanian, P., Baranzini, S.E.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife, 6 September 2017 (2017)
Beck, J.: Report from the field: PubMed central, an XML-based archive of life sciences journal articles. In: Proceedings of the International Symposium on XML for the Long Haul: Issues in the Long-term Preservation of XML, Mulberry Technologies, Inc
Ginsparg P.: arXiv. https://arxiv.org
bioRxiv. https://www.biorxiv.org/
Lambrix, P., Tan, H., Jakoniene, V., Strömbäck, L.: Biological ontologies. In: Semantic Web, pp. 85–99. Springer (2010)
Cohen, A.M.: A survey of current work in biomedical text mining. Brief. Bioinform. 6(1), 57–71 (2005)
Krallinger, M., Erhardt, R.A., Valencia, A.: Text-mining approaches in molecular biology and biomedicine. Drug Discovery Today 10(6), 439–445 (2005)
Dörpinghaus, J., Apke, A., Lage-Rupprecht, V., Stefan, A.: Data exploration and validation on dense knowledge graphs for biomedical research (2019)
Nicholson, D.N., Greene, C.S.: Constructing knowledge graphs and their biomedical applications. Comput. Struc. Biotechnol. J. 18, 1414–1428 (2020)
Slater, T.: Recent advances in modeling languages for pathway maps and computable biological networks. Drug Discovery Today 19(2), 193–198 (2014)
McBride, B.: The resource description framework (RDF) and its vocabulary description language RDFS. In: Handbook on Ontologies, pp. 51–65. Springer, Heidelberg (2004)
Himmelstein, D.S., Baranzini, S.E.: Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes. PLOS Comput. Biol. 11(7), e1004259 (2015)
Kim, J., Wang, Y., Fujiwara, T., Okuda, S., Callahan, T.J., Cohen, K.B.: Open agile text mining for bioinformatics: the PubAnnotation ecosystem. Bioinformatics, 35(21), 4372–4380 (2019)
Wei, C., Allot, A., Leaman, R., Lu, Z.: PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res. 47(W1), W587–W593 (2019)
Rindflesch, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J. Biomed. Inform. 36(6), 462–477 (2003)
Yuan, J., Jin, Z., Guo, H., Jin, H., Zhang, X., Smith, T., Luo, J.: Constructing biomedical domain-specific knowledge graph with minimum supervision. Knowl. Inf. Syst. 62(1), 317–336 (2019)
Ferragina, P., Scaiella, U.: TAGME. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management - CIKM 2010. ACM Press (2010)
Gene Ontology Consortium: The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32(90001), 258D–261 (2004)
Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1):D1074–D1082, November 2017
Piñero, J., Ramírez-Anguita, J.M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F.I., Furlong, L.: The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research, November 2019
Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S., Scheuermann, R.H., Shah, N., Whetzel, P.L, Lewis, S.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255, November 2007
Loper, E., Bird, S.: NLTK. In: Proceedings of the ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics. Association for Computational Linguistics (2002)
Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sumer, O., Bader, G.D.: Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics, page btv557, September 2015
Sayers, E.: Entrez Programming Utilities Help. https://www.ncbi.nlm.nih.gov/books/NBK25501/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Muscolino, A. et al. (2021). NETME: On-the-Fly Knowledge Network Construction from Biomedical Literature. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-65351-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-65351-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65350-7
Online ISBN: 978-3-030-65351-4
eBook Packages: EngineeringEngineering (R0)