[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Collaborative Filtering Recommendation Systems Algorithms, Strengths and Open Issues

  • Conference paper
  • First Online:
Software Engineering Perspectives in Intelligent Systems (CoMeSySo 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1295))

Included in the following conference series:

  • 686 Accesses

Abstract

Recommendation systems recommender systems are a subcategory of information filtering that is utilized to determine the preferences of users towards certain items. These systems emerged in the 1990’s and they have since changed the intelligence of both the web and humans. Vast amounts of research papers have been published in various domains. Recommendation systems suggest items to users and their principal purpose is to recommend items that are predicted to be suitable for users. Some of the most popular domains where recommendation systems are used include movies, music, jokes, restaurants, financial services, life insurance, Instagram Facebook and twitter followers. This paper explores different collaborative filtering algorithms. In so doing, the paper looks at the strengths and challenges (open issues) faced by this technique. The open issues give direction of future research work to researchers and also provide information of where to use collaborative filtering recommender systems applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Su, X., Khoshgoftaar, M.T.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 1–20 (2009)

    Google Scholar 

  2. Isinkaye, F.O., Folajimi, Y.O., Ojokoh, B.A.: Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16, 261–273 (2015)

    Article  Google Scholar 

  3. Breese, J., Heckerma, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, San Francisco, CA (1998)

    Google Scholar 

  4. Mustafa, N., Osman, A., Ahmed, A., Abdullah, A.: Collaborative filtering: techniques and applications. In: Conference: 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE) (2017)

    Google Scholar 

  5. Lee, J., Sun, M., Lebanon, G.: A comparative study of collaborative filtering algorithms. arXiv:1205.3193v1 [cs.IR] (2012)

  6. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  7. Al-Barznji, K., Atanassov, A.: Comparison of memory based filtering techniques for generating recommendations on large data. Eng. Autom. 1(1), 44–50 (2018)

    Google Scholar 

  8. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  9. Xiaoyuan, S., Taghi, M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–20 (2009)

    Google Scholar 

  10. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  11. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. Madison, Wisconsin (1998)

    Google Scholar 

  12. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: ACM 1-58113-348-0/01/0005, Hong Kong (2001)

    Google Scholar 

  13. Schafer, B.J., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 291–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Nagpal, D., Kaur, S., Gujral, S., Singh, A.: FR: A Recommender for Finding Faculty Based on CF Technique (2015)

    Google Scholar 

  15. Bahadorpour, M., Neysiani, B.S., Shahraki, M.N.: Determining optimal number of neighbors in item-based kNN collaborative filtering algorithm for learning preferences of new users. J. Telecommun. 9(3), 163–167 (2017)

    Google Scholar 

  16. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative Filtering Recommender Systems. Now Publishers Inc., Boston (2011)

    Book  Google Scholar 

  17. Saptono, R.: User-Item Based Collaborative Filtering for Improved Recommendation (2010)

    Google Scholar 

  18. Nakamura, A., Abe, N.: Collaborative filtering using weighted majority prediction algorithms. In: Proceedings of the Fifteenth International Conference on Machine Learning, San Francisco, CA, USA (1998)

    Google Scholar 

  19. Kim, H.-N., Ji, A.-T., Ha, I., Jo, G.-S.: Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation. Electron. Commer. Res. Appl. 9(1), 73–83 (2010)

    Article  Google Scholar 

  20. Al-Bashiri, H., Abdulgabber, M.A., Romli, A., Kahtan, H.: An Improved Memory-Based Collaborative Filtering Method Based on The TOPSIS (2018)

    Google Scholar 

  21. Do, T., Phung, M., Nguyen, V.: Model-based approach for collaborative filtering. In: The 6th International Conference on Information Technology for Education, Ho Chi Minh city, Vietnam (2010)

    Google Scholar 

  22. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  23. Deerwester, S., Dumais, S.T., Furnas, G., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  24. Gorrell, G.: Generalized Hebbian algorithm for incremental singular value decomposition in natural language processing. In: EACL, pp. 97–104 (2006)

    Google Scholar 

  25. Kurucz, M., Benczúr, A.A., Csalogány, A.: Methods for large scale SVD with missing values. In: KDD Cup and Workshop (2007)

    Google Scholar 

  26. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2(6), 459–473 (1989)

    Article  Google Scholar 

  27. Miller, B.N., Konstan, J.A., Riedl, J.: PocketLens: toward a personal recommender system. ACM Trans. Inf. Syst. 22(3), 437–476 (2004)

    Article  Google Scholar 

  28. Funk, S. (2006). http://sifter.org/simon/journal/20061211.html

  29. Funk, S.: Netflix (2006). http://sifter.org/˜simon/journal/20061211.html

  30. Sarwar, B., Karypis, G., Konstan, J.A., Riedl, J.: Application of dimensionality reduction in recommender system, 02 November 2000. Accessed 2019

    Google Scholar 

  31. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37, 573–595 (1995)

    Article  MathSciNet  Google Scholar 

  32. Sarwar, B., Karypis, G., Konstan, A.J., Riedl, J.: Incremental SVD-based algorithms for highly scalable recommender systems (2002)

    Google Scholar 

  33. Brand, M.E.: Incremental Singular Value Decomposition of Incomplete Data (2003)

    Google Scholar 

  34. Rajput, A., Aharwal, R.P., Dubey, M., Saxena, S., Raghuvanshi, M.: J48 and JRIP rules for e-governance data. Int. J. Comput. Sci. Secur. (IJCSS) 5(2), 201 (2011)

    Google Scholar 

  35. Hastie, T., Tibshirani, T., Friedman, R.: Unsupervised learning. In: The Elements of Statistical Learning. Springer, New York (2009)

    Google Scholar 

  36. Kavzoglu, T., Mather, P.M.: The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 24(23), 4907–4938 (2003)

    Article  Google Scholar 

  37. Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)

    Article  Google Scholar 

  38. Jung, Y.G., Kang, M.S., Heo, J.: Clustering performance comparison using K-means and expectation maximization algorithms. Biotechnol. Biotechnol. Equip. 28, 44–48 (2014)

    Article  Google Scholar 

  39. Shepperd, M., Kadoda, G.: Comparing software prediction techniques using simulation. IEEE Trans. Software Eng. 27(11), 1014–1022 (2001)

    Article  Google Scholar 

  40. Jadhav, S.D., Channe, H.P.: Efficient recommendation system using decision tree classifier and collaborative filtering. Int. Res. J. Eng. Technol. 3(8), 2114–2118 (2016)

    Google Scholar 

  41. Ungar, H.L., Foster, D.P.: Clustering methods for collaborative filtering. In: AAAI Workshop on Recommender Systems (1998)

    Google Scholar 

  42. Shrkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y.: A Comparison Study on Similarity and Dissimilarity Measure in Clastering Continuous Data (2015)

    Google Scholar 

  43. Jeyasekar, A., Akshay, K., Karan: Collaborative filtering using Euclidean distance in recommendation engine. Indian J. Sci. Technol. 9(37) (2016)

    Google Scholar 

  44. Zheng, M., Min, F., Zhang, H.-R., Chen, W.-B.: Fast Recommendations With the M-Distance (2016)

    Google Scholar 

  45. Torres, R.D.: Combining Collaborative and Content-based Filtering to Recommend Research Paper (2004)

    Google Scholar 

  46. Keenan, T.: Upwork Global Inc., 28 March 2019. https://www.upwork.com/hiring/data/how-collaborative-filtering-works/

  47. Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: IJCAI Workshop on Intelligent Techniques for Web Personalization (2003)

    Google Scholar 

  48. Lü, L., Medo, M., Yeung, C.H., Zhang, C.Y., Zhang, Z.K., Zhou, T.: Recommender systems. Phys. Rep. 519(1), 1–49 (2012)

    Article  Google Scholar 

  49. Madhukar, M.: Challenges & limitation in recommender systems. Int. J. Latest Trends Eng. Technol. (IJLTET) 4(3), 138–142 (2014)

    Google Scholar 

  50. Park, S.-T., Chu, W.: Pairwise preference regression for cold-start recommendation. In: Proceedings of the 2009 ACM Conference on Recommender Systems, New York (2009)

    Google Scholar 

  51. Shinde, U., Shedge, R.: Comparative analysis of collaborative filtering technique. IOSR J. Comput. Eng. (IOSR-JCE) 10, 77–82 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Appiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manamolela, L., Zuva, T., Appiah, M. (2020). Collaborative Filtering Recommendation Systems Algorithms, Strengths and Open Issues. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-63319-6_14

Download citation

Publish with us

Policies and ethics