[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Facilitating the Analysis of COVID-19 Literature Through a Knowledge Graph

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Abstract

At the end of 2019, Chinese authorities alerted the World Health Organization (WHO) of the outbreak of a new strain of the coronavirus, called SARS-CoV-2, which struck humanity by an unprecedented disaster a few months later. In response to this pandemic, a publicly available dataset was released on Kaggle which contained information of over 63,000 papers. In order to facilitate the analysis of this large mass of literature, we have created a knowledge graph based on this dataset. Within this knowledge graph, all information of the original dataset is linked together, which makes it easier to search for relevant information. The knowledge graph is also enriched with additional links to appropriate, already existing external resources. In this paper, we elaborate on the different steps performed to construct such a knowledge graph from structured documents. Moreover, we discuss, on a conceptual level, several possible applications and analyses that can be built on top of this knowledge graph. As such, we aim to provide a resource that allows people to more easily build applications that give more insights into the COVID-19 pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/RDFLib/rdflib.

  2. 2.

    https://github.com/kingfish777/COVID19.

  3. 3.

    https://github.com/rmlio/yarrrml-parser.

  4. 4.

    https://github.com/GillesVandewiele/COVID-KG.

  5. 5.

    www.kaggle.com/iljara/covid-19-knowledge-graph-a-network-analysis.

References

  1. Allen Institute For AIF: Covid-19 open research dataset challenge (cord-19). https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

  2. Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F.: The proximal origin of sars-cov-2. Nat. Med. 26(4), 450–452 (2020)

    Article  Google Scholar 

  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  4. Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6 (2018)

    Google Scholar 

  5. Johns Hopkins Coronavirus Resource Center: Covid-19 dashboard by the center for systems science and engineering (csse) at johns hopkins university (jhu). https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

  6. Dimou, A., De Meester, B., Heyvaert, P., Verborgh, R., Latré, S., Mannens, E.: RMLMapper: a tool for uniform Linked Data generation from heterogeneous data

    Google Scholar 

  7. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web, vol. 1184 (2014)

    Google Scholar 

  8. Domingo-Fernandez, D., et al.: Covid-19 knowledge graph: a computable, multi-modal, cause-and-effect knowledge model of covid-19 pathophysiology. BioRxiv (2020)

    Google Scholar 

  9. Färber, M.: The microsoft academic knowledge graph: a linked data source with 8 billion triples of scholarly data. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 113–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_8

    Chapter  Google Scholar 

  10. Guoqian, J., Harold Solbrig, F.T.: Cord-19-on-fhir - semantics for covid-19 discovery. https://github.com/fhircat/CORD-19-on-FHIR

  11. Haak, L.L., Fenner, M., Paglione, L., Pentz, E., Ratner, H.: Orcid: a system to uniquely identify researchers. Learn. Publ. 25(4), 259–264 (2012)

    Article  Google Scholar 

  12. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked data generation at your fingertips!. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 213–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_40

    Chapter  Google Scholar 

  13. Lammey, R.: Crossref text and data mining services. Science Editing (2015)

    Google Scholar 

  14. McCusker, J.P., Dumontier, M., Yan, R., He, S., Dordick, J.S., McGuinness, D.L.: Finding melanoma drugs through a probabilistic knowledge graph. PeerJ Comput. Sci. 3, e106 (2017)

    Article  Google Scholar 

  15. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011)

    Google Scholar 

  16. Noy, N.F., et al.: Bioportal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37, W170–W173 (2009)

    Article  Google Scholar 

  17. Preusse, M.: COVID-19 Knowledge Graph (2020). https://covidgraph.org

  18. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  19. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  20. Shotton, D., Peroni, S.: Fabio, the FRBR-aligned bibliographic ontology (2011)

    Google Scholar 

  21. Steenwinckel, B., Vandewiele, G., De Turck, F., Ongenae, F.: Csv2kg: Transforming tabular data into semantic knowledge. SemTab, ISWC Challenge (2019)

    Google Scholar 

  22. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: A Modular SPARQL Query Engine for the Web. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_15

    Chapter  Google Scholar 

  23. DSG-UPB: Covid19ds: RDF file generation is based on papers related to the covid-19 and coronavirus-related research (2020)

    Google Scholar 

  24. Vandewiele, G., Steenwinckel, B., Ongenae, F., De Turck, F.: Inducing a decision tree with discriminative paths to classify entities in a knowledge graph. In: SEPDA2019, the 4th International Workshop on Semantics-Powered Data Mining and Analytics, pp. 1–6 (2019)

    Google Scholar 

  25. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37, 184–206 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Steenwinckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steenwinckel, B. et al. (2020). Facilitating the Analysis of COVID-19 Literature Through a Knowledge Graph. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12507. Springer, Cham. https://doi.org/10.1007/978-3-030-62466-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62466-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62465-1

  • Online ISBN: 978-3-030-62466-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics