Abstract
At the end of 2019, Chinese authorities alerted the World Health Organization (WHO) of the outbreak of a new strain of the coronavirus, called SARS-CoV-2, which struck humanity by an unprecedented disaster a few months later. In response to this pandemic, a publicly available dataset was released on Kaggle which contained information of over 63,000 papers. In order to facilitate the analysis of this large mass of literature, we have created a knowledge graph based on this dataset. Within this knowledge graph, all information of the original dataset is linked together, which makes it easier to search for relevant information. The knowledge graph is also enriched with additional links to appropriate, already existing external resources. In this paper, we elaborate on the different steps performed to construct such a knowledge graph from structured documents. Moreover, we discuss, on a conceptual level, several possible applications and analyses that can be built on top of this knowledge graph. As such, we aim to provide a resource that allows people to more easily build applications that give more insights into the COVID-19 pandemic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen Institute For AIF: Covid-19 open research dataset challenge (cord-19). https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F.: The proximal origin of sars-cov-2. Nat. Med. 26(4), 450–452 (2020)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6 (2018)
Johns Hopkins Coronavirus Resource Center: Covid-19 dashboard by the center for systems science and engineering (csse) at johns hopkins university (jhu). https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Dimou, A., De Meester, B., Heyvaert, P., Verborgh, R., Latré, S., Mannens, E.: RMLMapper: a tool for uniform Linked Data generation from heterogeneous data
Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web, vol. 1184 (2014)
Domingo-Fernandez, D., et al.: Covid-19 knowledge graph: a computable, multi-modal, cause-and-effect knowledge model of covid-19 pathophysiology. BioRxiv (2020)
Färber, M.: The microsoft academic knowledge graph: a linked data source with 8 billion triples of scholarly data. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 113–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_8
Guoqian, J., Harold Solbrig, F.T.: Cord-19-on-fhir - semantics for covid-19 discovery. https://github.com/fhircat/CORD-19-on-FHIR
Haak, L.L., Fenner, M., Paglione, L., Pentz, E., Ratner, H.: Orcid: a system to uniquely identify researchers. Learn. Publ. 25(4), 259–264 (2012)
Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked data generation at your fingertips!. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 213–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_40
Lammey, R.: Crossref text and data mining services. Science Editing (2015)
McCusker, J.P., Dumontier, M., Yan, R., He, S., Dordick, J.S., McGuinness, D.L.: Finding melanoma drugs through a probabilistic knowledge graph. PeerJ Comput. Sci. 3, e106 (2017)
Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011)
Noy, N.F., et al.: Bioportal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37, W170–W173 (2009)
Preusse, M.: COVID-19 Knowledge Graph (2020). https://covidgraph.org
Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Shotton, D., Peroni, S.: Fabio, the FRBR-aligned bibliographic ontology (2011)
Steenwinckel, B., Vandewiele, G., De Turck, F., Ongenae, F.: Csv2kg: Transforming tabular data into semantic knowledge. SemTab, ISWC Challenge (2019)
Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: A Modular SPARQL Query Engine for the Web. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_15
DSG-UPB: Covid19ds: RDF file generation is based on papers related to the covid-19 and coronavirus-related research (2020)
Vandewiele, G., Steenwinckel, B., Ongenae, F., De Turck, F.: Inducing a decision tree with discriminative paths to classify entities in a knowledge graph. In: SEPDA2019, the 4th International Workshop on Semantics-Powered Data Mining and Analytics, pp. 1–6 (2019)
Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37, 184–206 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Steenwinckel, B. et al. (2020). Facilitating the Analysis of COVID-19 Literature Through a Knowledge Graph. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12507. Springer, Cham. https://doi.org/10.1007/978-3-030-62466-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-62466-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62465-1
Online ISBN: 978-3-030-62466-8
eBook Packages: Computer ScienceComputer Science (R0)