[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Further Optimizations of CSIDH: A Systematic Approach to Efficient Strategies, Permutations, and Bound Vectors

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12146))

Included in the following conference series:

  • 988 Accesses

  • 20 Citations

Abstract

CSIDH is a recent post-quantum key establishment protocol based on constructing isogenies between supersingular elliptic curves. Several recent works give constant-time implementations of CSIDH along with some optimizations of the ideal class group action evaluation algorithm, including the SIMBA technique of Meyer et al. and the “two-point method” of Onuki et al. A recent work of Cervantes-Vázquez et al. details a number of improvements to the works of Meyer et al. and Onuki et al. Several of these optimizations—in particular, the choice of ordering of the primes, the choice of SIMBA partition and strategies, and the choice of bound vector which defines the secret keyspace—have been made in an ad hoc fashion, and so while they yield performance improvements it has not been clear whether these choices could be improved upon, or how to do so. In this work we present a framework for improving these optimizations using (respectively) linear programming, dynamic programming, and convex programming techniques. Our framework is applicable to any CSIDH security level, to all currently-proposed paradigms for computing the class group action, and to any choice of model for the underlying curves. Using our framework we find improved parameter sets for the two major methods of computing the group action: in the case of the implementation of Meyer et al. we obtain a 13.04% speedup without applying the further optimizations proposed by Cervantes-Vázquez et al., while for that of Cervantes-Vázquez et al. under the two-point method we obtain a speedup of 5.23%, giving the fastest constant-time implementation of CSIDH to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 13.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Meth. Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  Google Scholar 

  2. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  3. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

    Chapter  Google Scholar 

  4. Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Jager, H. (ed.) Number Theory Noordwijkerhout 1983. LNM, vol. 1068, pp. 33–62. Springer, Heidelberg (1984). https://doi.org/10.1007/BFb0099440

    Chapter  Google Scholar 

  5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_11

    Chapter  Google Scholar 

  6. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291

  7. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE J. Comput. Sci. Eng. 5(3), 68–75 (1998)

    Article  Google Scholar 

  8. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Dolan, E.D.: The NEOS server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory (2001)

    Google Scholar 

  10. Gropp, W., Moré, J.J.: Optimization environments and the NEOS server. In: Buhman, M.D., Iserles, A., (eds.) Approximation Theory and Optimization, pp. 167–182. Cambridge University Press, New York (1997)

    Google Scholar 

  11. Hutchinson, A., Karabina, K.: Constructing canonical strategies for parallel implementation of isogeny based cryptography. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 169–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_10

    Chapter  Google Scholar 

  12. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations of CSIDH: a systematic approach to efficient strategies, permutations, and bound vectors. Cryptology ePrint Archive, Report 2019/1121 (2019). https://eprint.iacr.org/2019/1121

  13. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and constant-time CSIDH on embedded devices. Cryptology ePrint Archive, Report 2019/297 (2019). https://eprint.iacr.org/2019/297

  14. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_17

    Chapter  Google Scholar 

  15. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_8

    Chapter  Google Scholar 

  16. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on edwards curves. Cryptology ePrint Archive, Report 2019/843 (2019). https://eprint.iacr.org/2019/843

  17. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) a faster constant-time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_2

    Chapter  Google Scholar 

  18. Peikert, C.: He gives C-Sieves on the CSIDH. Cryptology ePrint Archive, Report 2019/725 (2019). https://eprint.iacr.org/2019/725

  19. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

Download references

Acknowledgements

The authors would like to thank the reviewers for their helpful comments. This work is supported in parts by NSF CNS-1801341, NSF GRFP-1939266, and NIST-60NANB17D184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Hutchinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R. (2020). Further Optimizations of CSIDH: A Systematic Approach to Efficient Strategies, Permutations, and Bound Vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12146. Springer, Cham. https://doi.org/10.1007/978-3-030-57808-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57808-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57807-7

  • Online ISBN: 978-3-030-57808-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics