[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Proprotein Convertase Subtilisin/Kexin Type 9: Functional Role in Lipid Metabolism and Its Therapeutic Inhibition

  • Chapter
  • First Online:
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1287 Accesses

Abstract

Proprotein convertase/kexin type 9 (PCSK9) is produced and secreted by hepatocytes. Once in the extracellular milieu, PCSK9 can bind to the low-density lipoprotein receptor (LDLR) and regulates its cell surface expression. PCSK9 functions as a chaperone molecule. Though much remains to be elucidated about how PCSK9 orchestrates the intracellular routing of LDL-LDLR complexes within the cell, it is clear that PCSK9 promotes the entry of LDL-LDLR complexes into the lysosome where they are proteolytically catabolized. PCSK9 also regulates the expression of a number of other lipoprotein receptors, such as the apoE2 receptor, the VLDL receptor, the LDLR related protein 1, the fatty acid transport protein CD 36, and possibly the pathway (yet to be defined) for lipoprotein(a) clearance. Because it downregulates LDLR, PCSK9 reduces hepatocyte LDL-cholesterol (LDL-C) clearance capacity. Persons with gain-of-function mutations in PCSK9 have increased serum levels of LDL-C and increased risk for developing atherosclerotic cardiovascular disease (ASCVD). Persons with loss-of-function mutations in PCSK9 have reduced serum LDL-C and proportionately lower risk for ASCVD. The inhibition of PCSK9 with monoclonal antibodies or with antisense oligonucleotides directed against its mRNA has revolutionized the management of dyslipidemia. Either used as monotherapies or in combination with statins and other lipid-lowering drugs, the inhibition of PCSK9 allows for reductions in serum LDL-C to levels not previously thought possible. The reduction of pCSK9 availability dramatically increases hepatocyte cell surface expression of LDLR. The inhibition of PCSK9 has been shown to be safe and highly efficacious. Prospective, randomized outcomes trails with evolocumab and alirocumab demonstrate the capacity to reduce risk for myocardial infarction, ischemic stroke, revascularization, and hospitalization for unstable angina. In addition to their role in managing primary hyperlipidemia, the PCSK9 monoclonal antibodies have also been shown to be highly efficacious in the management of familial hypercholesterolemia and have the capacity to reduce rates of atherosclerotic plaque progression and induce plaque regression in the coronary tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seidah NG, Sadr MS, Chretien M, Mbikay M. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J Biol Chem. 2013;288:21473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chakraborty P, Acquasaliente L, Pelc LA, Di Cera E. Interplay between conformational selection and zymogen activation. Sci Rep. 2018;8:4080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Turpeinen H, Ortutay Z, Pesu M. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr Genomics. 2013;14:453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    Article  CAS  PubMed  Google Scholar 

  5. Seidah NG, Mayer G, Zaid A, et al. The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol. 2008;40:1111–25.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He G, Gupta S, Yi M, Michaely P, Hobbs HH, Cohen JC. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem. 2002;277:44044–9.

    Article  CAS  PubMed  Google Scholar 

  8. Maurer ME, Cooper JA. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J Cell Sci. 2006;119:4235–46.

    Article  CAS  PubMed  Google Scholar 

  9. Popova NV, Deyev IE, Petrenko AG. Clathrin-mediated endocytosis and adaptor proteins. Acta Nat. 2013;5:62–73.

    Article  CAS  Google Scholar 

  10. Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci U S A. 2008;105:1820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol. 2014;25:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  CAS  PubMed  Google Scholar 

  13. Abifadel M, Rabes JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30:520–9.

    Article  CAS  PubMed  Google Scholar 

  14. Jeong HJ, Lee H-S, Kim K-S, Kim Y-K, Yoon D, Park SW. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49:399–409.

    Article  CAS  PubMed  Google Scholar 

  15. Benjannet S, Hamelin J, Chretien M, Seidah NG. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem. 2012;287:33745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benjannet S, Hamelin J, Chrétien M, Seidah NG. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem. 2012;287:33745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5.

    Article  CAS  PubMed  Google Scholar 

  18. Mayne J, Dewpura T, Raymond A, et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin Chem. 2011;57:1415–23.

    Article  CAS  PubMed  Google Scholar 

  19. Kent ST, Rosenson RS, Avery CL, et al. PCSK9 loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: data from 9 studies of blacks and whites. Circ Cardiovasc Genet. 2017;10:e001632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schulz R, Schluter KD. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl. 2017;12:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283:2363–72.

    Article  CAS  PubMed  Google Scholar 

  22. Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 2013;8:e64145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shan L, Pang L, Zhang R, Murgolo NJ, Lan H, Hedrick JA. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun. 2008;375:69–73.

    Article  CAS  PubMed  Google Scholar 

  24. Demers A, Samami S, Lauzier B, et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 2015;35:2517–25.

    Article  CAS  PubMed  Google Scholar 

  25. Schulz R, Schlüter K-D. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl. 2017;12:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rajewsky K. The advent and rise of monoclonal antibodies. Nature. 2019;575:47–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gibbs JP, Slatter JG, Egbuna O, et al. Evaluation of evolocumab (AMG 145), a fully human anti-PCSK9 IgG2 monoclonal antibody, in subjects with hepatic impairment. J Clin Pharmacol. 2016;57:513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kasichayanula S, Grover A, Emery MG, et al. Clinical pharmacokinetics and pharmacodynamics of Evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018;57:769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez J-M, Brunet A, Hurbin F, DiCioccio AT, Rauch C, Fabre D. Population pharmacokinetic analysis of alirocumab in healthy volunteers or hypercholesterolemic subjects using a Michaelis–Menten approximation of a target-mediated drug disposition model—support for a biologics license application submission: part I. Clin Pharmacokinet. 2019;58:101–13.

    Article  CAS  PubMed  Google Scholar 

  30. Koren MJ, Lundqvist P, Bolognese M, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–40.

    Article  CAS  PubMed  Google Scholar 

  31. Robinson JG, Nedergaard BS, Rogers WJ, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–82.

    Article  PubMed  CAS  Google Scholar 

  32. Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.

    Article  CAS  PubMed  Google Scholar 

  33. Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.

    Article  CAS  PubMed  Google Scholar 

  34. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40.

    Article  CAS  PubMed  Google Scholar 

  35. Carr SS, Hooper AJ, Sullivan DR, Burnett JR. Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology. 2019;51:148–54.

    Article  CAS  PubMed  Google Scholar 

  36. Sniderman AD, Robinson JG. ApoB in clinical care: pro and con. Atherosclerosis. 2019;282:169–75.

    Article  CAS  PubMed  Google Scholar 

  37. Orso E, Schmitz G. Lipoprotein(a) and its role in inflammation, atherosclerosis and malignancies. Clin Res Cardiol Suppl. 2017;12:31–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsimikas S. Potential causality and emerging medical therapies for lipoprotein(a) and its associated oxidized phospholipids in calcific aortic valve stenosis. Circ Res. 2019;124:405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boffa MB, Koschinsky ML. Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J Lipid Res. 2016;57:745–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol. 2019;16:305–18.

    Article  PubMed  Google Scholar 

  41. Burgess S, Ference BA, Staley JR, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 2018;3:619–27.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nestel P. Lipoprotein(a) removal still a mystery. J Am Heart Assoc. 2019;8:e011903.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Toth PP, Jones SR, Monsalvo ML, Elliott-Davey M, López JAG, Banach M. Effect of evolocumab on non-high-density lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a): a pooled analysis of phase 2 and phase 3 studies. J Am Heart Assoc. 2020;9:e014129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cromwell WC, Otvos JD, Keyes MJ, et al. LDL particle number and risk of future cardiovascular disease in the Framingham offspring study – implications for LDL management. J Clin Lipidol. 2007;1:583–92.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cantey EP, Wilkins JT. Discordance between lipoprotein particle number and cholesterol content: an update. Curr Opin Endocrinol Diabetes Obes. 2018;25:130–6.

    Article  CAS  PubMed  Google Scholar 

  46. Lamarche B, St-Pierre AC, Ruel IL, Cantin B, Dagenais GR, Després JP. A prospective, population-based study of low density lipoprotein particle size as a risk factor for ischemic heart disease in men. Can J Cardiol. 2001;17:859–65.

    CAS  PubMed  Google Scholar 

  47. Superko HR, Gadesam RR. Is it LDL particle size or number that correlates with risk for cardiovascular disease? Curr Atheroscler Rep. 2008;10:377–85.

    Article  CAS  PubMed  Google Scholar 

  48. Varbo A, Nordestgaard BG. Remnant lipoproteins. Curr Opin Lipidol. 2017;28:300–7.

    Article  CAS  PubMed  Google Scholar 

  49. Joshi PH, Khokhar AA, Massaro JM, et al. Remnant lipoprotein cholesterol and incident coronary heart disease: the Jackson Heart and Framingham Offspring Cohort Studies. J Am Heart Assoc. 2016;5:e002765.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martin SS, Khokhar AA, May HT, et al. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the lipoprotein investigators collaborative. Eur Heart J. 2014;36:22–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Toth PP, Jones SR, Slee A, et al. Relationship between lipoprotein subfraction cholesterol and residual risk for cardiovascular outcomes: a post hoc analysis of the AIM-HIGH trial. J Clin Lipidol. 2018;12:741–747.e11.

    Article  PubMed  Google Scholar 

  52. Walldius G, AASTVEIT AH, Jungner I. Stroke mortality and the apoB/apoA-I ratio: results of the AMORIS prospective study. J Intern Med. 2006;259:259–66.

    Article  CAS  PubMed  Google Scholar 

  53. Tian M, Li R, Shan Z, Wang DW, Jiang J, Cui G. Comparison of Apolipoprotein B/A1 ratio, Framingham risk score and TC/HDL-c for predicting clinical outcomes in patients undergoing percutaneous coronary intervention. Lipids Health Dis. 2019;18:202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Toth PP, Sattar N, Blom DJ, et al. Effect of evolocumab on lipoprotein particles. Am J Cardiol. 2018;121:308–14.

    Article  CAS  PubMed  Google Scholar 

  55. Nicholls SJ, Puri R, Anderson T, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients. JAMA. 2016;316:2373.

    Article  CAS  PubMed  Google Scholar 

  56. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  57. Sabatine MS, De Ferrari GM, Giugliano RP, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease. Circulation. 2018;138:756–66.

    Article  CAS  PubMed  Google Scholar 

  58. Bonaca MP, Nault P, Giugliano RP, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease. Circulation. 2018;137:338–50.

    Article  CAS  PubMed  Google Scholar 

  59. Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50.

    Article  CAS  PubMed  Google Scholar 

  60. O’Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139:1483–92.

    Article  PubMed  CAS  Google Scholar 

  61. BjöRkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24:806–15.

    Article  PubMed  CAS  Google Scholar 

  62. Katsuno M, Adachi H, Sobue G. Getting a handle on Huntington’s disease: the case for cholesterol. Nat Med. 2009;15:253–4.

    Article  CAS  PubMed  Google Scholar 

  63. Rojas-Fernandez CH, Goldstein LB, Levey AI, Taylor BA, Bittner V. An assessment by the statin cognitive safety task force: 2014 update. J Clin Lipidol. 2014;8:S5–S16.

    Article  PubMed  Google Scholar 

  64. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  65. Trompet S, van Vliet P, de Craen AJ, et al. Pravastatin and cognitive function in the elderly. Results of the PROSPER study. J Neurol. 2010;257:85–90.

    Article  CAS  PubMed  Google Scholar 

  66. Etminan M, Gill S, Samii A. The role of lipid-lowering drugs in cognitive function: a meta-analysis of observational studies. Pharmacotherapy. 2003;23:726–30.

    Article  CAS  PubMed  Google Scholar 

  67. Cramer C, Haan MN, Galea S, Langa KM, Kalbfleisch JD. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology. 2008;71:344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rea TD, Breitner JC, Psaty BM, et al. Statin use and the risk of incident dementia. Arch Neurol. 2005;62:1047.

    Article  PubMed  Google Scholar 

  69. Giugliano RP, Mach F, Zavitz K, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377:633–43.

    Article  CAS  PubMed  Google Scholar 

  70. Toth PP, Descamps O, Genest J, et al. Pooled safety analysis of evolocumab in over 6000 patients from double-blind and open-label extension studies. Circulation. 2017;135:1819–31.

    Article  CAS  PubMed  Google Scholar 

  71. Kereiakes DJ, Robinson JG, Cannon CP, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: the ODYSSEY COMBO I study. Am Heart J. 2015;169:906–915.e13.

    Article  CAS  PubMed  Google Scholar 

  72. Leiter LA, Cariou B, Muller-Wieland D, et al. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: the ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. 2017;19:1781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ginsberg HN, Rader DJ, Raal FJ, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc Drugs Ther. 2016;30:473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gaudet D, Watts GF, Robinson JG, et al. Effect of alirocumab on lipoprotein(a) over >/=1.5 years (from the phase 3 ODYSSEY program). Am J Cardiol. 2017;119:40–6.

    Article  CAS  PubMed  Google Scholar 

  76. Toth PP, Hamon SC, Jones SR, et al. Effect of alirocumab on specific lipoprotein non-high-density lipoprotein cholesterol and subfractions as measured by the vertical auto profile method: analysis of 3 randomized trials versus placebo. Lipids Health Dis. 2016;15:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  78. Sinnaeve PR, Schwartz GG, Wojdyla DM, et al. Effect of alirocumab on cardiovascular outcomes after acute coronary syndromes according to age: an ODYSSEY OUTCOMES trial analysis. Eur Heart J. 2019;41:2248.

    Article  PubMed Central  CAS  Google Scholar 

  79. Endres M, Nolte CH, Scheitz JF. Statin treatment in patients with intracerebral hemorrhage. Stroke. 2018;49:240–6.

    Article  PubMed  Google Scholar 

  80. Steg PG, Szarek M, Bhatt DL, et al. Effect of alirocumab on mortality after acute coronary syndromes. Circulation. 2019;140:103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goodman SG, Aylward PE, Szarek M, et al. Effects of alirocumab on cardiovascular events after coronary bypass surgery. J Am Coll Cardiol. 2019;74:1177–86.

    Article  PubMed  Google Scholar 

  82. Bittner VA, Szarek M, Aylward PE, et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol. 2020;75:133–44.

    Article  CAS  PubMed  Google Scholar 

  83. Jones PH, Bays HE, Chaudhari U, et al. Safety of alirocumab (a PCSK9 monoclonal antibody) from 14 randomized trials. Am J Cardiol. 2016;118:1805–11.

    Article  CAS  PubMed  Google Scholar 

  84. Robinson JG, Rosenson RS, Farnier M, et al. Safety of very low low-density lipoprotein cholesterol levels with alirocumab. Pooled data from randomized trials. J Am Coll Cardiol. 2017;69:471–82.

    Article  CAS  PubMed  Google Scholar 

  85. Toth PP. Emerging LDL therapies: Mipomersen—antisense oligonucleotide therapy in the management of hypercholesterolemia. J Clin Lipidol. 2013;7:S6–S10.

    Article  PubMed  Google Scholar 

  86. Fogacci F, Ferri N, Toth PP, Ruscica M, Corsini A, Cicero AFG. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs. 2019;79:751–66.

    Article  CAS  PubMed  Google Scholar 

  87. Pratt AJ, Macrae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284:17897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kosmas CE, Munoz Estrella A, Sourlas A, et al. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases. 2018;6:63.

    Article  CAS  PubMed Central  Google Scholar 

  89. Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA. 2016;7:637–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nair JK, Willoughby JLS, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.

    Article  CAS  PubMed  Google Scholar 

  91. Bon C, Hofer T, Bousquet-Melou A, Davies MR, Krippendorff BF. Capacity limits of asialoglycoprotein receptor-mediated liver targeting. MAbs. 2017;9:1360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.

    Article  CAS  PubMed  Google Scholar 

  93. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019;4:1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leiter LA, Teoh H, Kallend D, et al. Inclisiran lowers LDL-C and PCSK9 irrespective of diabetes status: the ORION-1 randomized clinical trial. Diabetes Care. 2019;42:173–6.

    Article  CAS  PubMed  Google Scholar 

  95. Stoekenbroek RM, Kallend D, Wijngaard PL, Kastelein JJ. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Futur Cardiol. 2018;14:433–42.

    Article  CAS  Google Scholar 

  96. Toth PP. Novel therapies for lowdensity lipoprotein cholesterol reduction. Am J Cardiol. 2016;118(6, Supplement):19A–32A.

    Article  CAS  PubMed  Google Scholar 

  97. Toth PP. PCSK9 and lipoprotein(a): the plot thickens. Circ Res. 2016;119:3–6.

    Article  CAS  PubMed  Google Scholar 

  98. Bays HE, et al. Alirocumab treatment and achievement of non-high-density lipoprotein cholesterol and apolipoprotein B goals in patients with hypercholesterolemia: pooled results from 10 phase 3 ODYSSEY trials. J Am Heart Assoc. 2017;6:e005639.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jukema JW, et al. Effect of alirocumab on stroke in ODYSSEY OUTCOMES. Circulation. 2019;140(25):2054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nordestgaard BG, et al. Advances in lipid-lowering therapy through gene-silencing technologies. Nat Rev Cardiol. 2018;15(5):261–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toth, P.P. (2021). Proprotein Convertase Subtilisin/Kexin Type 9: Functional Role in Lipid Metabolism and Its Therapeutic Inhibition. In: Davidson, M.H., Toth, P.P., Maki, K.C. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-56514-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56514-5_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56513-8

  • Online ISBN: 978-3-030-56514-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics