[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Augmented Reality for Interventional Procedures

  • Chapter
  • First Online:
Digital Surgery

Abstract

Augmented reality now allows us to see the real world superimposed with live data and 3D medical imagery needed to guide precision image-guided interventional therapy. Physicians performing advanced interventional procedures, in an ideal state, are able to keep their hands on the instruments and their eyes on the patient and to access contextually relevant digital information at any given point in time. Data should be displayed as a 3D hologram when required and in an ergonomically optimal size and position. Perhaps even more importantly, rather than having to shift focus away from the patient to press physical buttons to operate interventional equipment, an AR-powered interventional suite can allow control of the entire interventional system and environment with voice recognition, eye tracking, and advanced intuitive gestures. In this chapter, we will describe several examples of such augmented reality applications and hardware. The properties, benefits, and challenges of such applications will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kobeiter H, Nahum J, Becquemin J-P. Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation. 2011;124:e280–2.

    Article  Google Scholar 

  2. Ruijters D, Homan R, Mielekamp P, van de Haar P, Babic D. Validation of 3D multimodality roadmapping in interventional neuroradiology. Phys Med Biol. 2011;56(16):5335–54. https://doi.org/10.1088/0031-9155/56/16/017.

    Article  PubMed  Google Scholar 

  3. Blanc R, Seiler A, Robert T, et al. Multimodal angiographic assessment of cerebral arteriovenous malformations: a pilot study. J Neurointerv Surg. 2015;7:841–7. https://doi.org/10.1136/neurintsurg-2014-011402.

    Article  PubMed  Google Scholar 

  4. Wink O, Hecht HS, Ruijters D. Coronary computed tomographic angiography in the cardiac catheterization laboratory: current applications and future developments, cardiology clinics, Advances in coronary angiography, S. J Chen and J D Carroll, 2009;27(3):513–29. https://doi.org/10.1016/j.ccl.2009.04.002.

    Chapter  Google Scholar 

  5. Goreczny S, Dryzek P, Moszura T. Novel 3-dimensional image fusion software for live guidance of percutaneous pulmonary valve implantation. Circ Cardiovasc Interv. 2016;9(7). https://doi.org/10.1161/CIRCINTERVENTIONS.116.003711.

  6. Kliger C, Jelnin V, Sharma S, Panagopoulos G, Einhorn BN, Kumar R, Cuesta F, Maranan L, Kronzon I, Carelsen B, Cohen H, Perk G, van den Boomen R, Sahyoun C, Ruiz CE. CT angiography-fluoroscopy fusion imaging for percutaneous transapical access. JACC Cardiovasc Imaging. 2014;7:169–77. https://doi.org/10.1016/j.jcmg.2013.10.009.

  7. Gupta A, Grunhagen T. Live MR angiographic roadmapping for uterine artery embolization: a feasibility study. J Vasc Interv Radiol. 2013;24(11):1690–7. https://doi.org/10.1016/j.jvir.2013.07.013.

  8. Spelle L, Ruijters D, Babic D, Homan R, Mielekamp P, Guillermic J, Moret J. First clinical experience in applying XperGuide in embolization of jugular paragangliomas by direct intratumoral puncture. Int J Comput Assist Radiol Surg. 2009;4(6):527–33. https://doi.org/10.1007/s11548-009-0370-6.

    Article  PubMed  Google Scholar 

  9. Elmi-Terander A, Skulason H, Söderman M, Racadio J, Homan R, Babic D, van der Vaart N, Nachabe R. Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a spine cadaveric feasibility and accuracy study. Spine (Phila Pa 1976). 2016;41(21):E1303–11.

    Article  Google Scholar 

  10. Racadio JM, Nachabe R, Homan R, Schierling R, Racadio JM, Babić D. Augmented reality on a C-Arm system: a preclinical assessment for percutaneous needle localization. Radiology. 281(1):249–55. https://doi.org/10.1148/radiol.2016151040.

  11. Gafoor S, Schulz P, Heuer L, Matic P, Franke J, Bertog S, Reinartz M, Vaskelyte L, Hofmann I, Sievert H. Use of EchoNavigator, a novel echocardiography-fluoroscopy overlay system, for transseptal puncture and left atrial appendage occlusion. J Interv Cardiol. 2015;28:215–7. https://doi.org/10.1111/joic.12170.

    Article  PubMed  Google Scholar 

  12. Balzer J, Zeus T, Hellhammer K, Veulemans V, Eschenhagen S, Kehmeier E, Meyer C, Rassaf T, Kelm M. Initial clinical experience using the EchoNavigator(®)-system during structural heart disease interventions. World J Cardiol. 2015;7(9):562–70. https://doi.org/10.4330/wjc.v7.i9.562.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim BH, Koh Y-S, Lee K-Y, Chung W-B. Three-dimensional EchoNavigator system guided transcatheter closure of paravalvular leakage. J Cardiovasc Imaging. 2019;27(3):227–9. https://doi.org/10.4250/jcvi.2019.27.e30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frimerman A, Abergel E, Blondheim DS, Shotan A, Meisel S, Shochat M, Punjabi P, Roguin A. Novel method for real time co-registration of IVUS and coronary angiography. J Interv Cardiol. 2016;29(2) https://doi.org/10.1111/joic.12279.

  15. Piayda K, Kleinebrecht L, Afzal S, Bullens R, ter Horst I, Polzin A, Veulemans V, Dannenberg L, Wimmer AC, Jung C, Bönner F, Kelm M, Hellhammer K, Zeus T. Dynamic coronary roadmapping during percutaneous coronary intervention: a feasibility study. Eur J Med Res. 2018;23:36.

    Article  Google Scholar 

  16. Yabe T, Muramatsu T, Tsukahara R, et al. The impact of percutaneous coronary intervention using the novel dynamic coronary roadmap system. Heart Vessel. 2019. https://doi.org/10.1007/s00380-019-01502-1.

  17. Chen L, Day TW, Tang W, John NW. Recent developments and future challenges in medical mixed reality. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR). 2017.

    Google Scholar 

  18. Chan D, et al. Joint practice guideline for sterile technique during vascular and interventional radiology procedures: from the Society of Interventional Radiology, Association of perioperative Registered Nurses, and Association of Radiologic and Imaging Nursing, for the Society of Interventional Radiology (Wael Saad, MD, Chair), Standards of Practice Committee, and Endorsed by the Cardiovascular Interventional Radiological Society of Europe and the Canadian Interventional Radiology Association. J Vasc Interv Radiol. 2012;23:1603–12.

    Article  Google Scholar 

  19. Butt U, Saleem U, Yousuf K, El-Bouni T, Chambler A, Eid AS. Infection risk from surgeons’ eyeglasses. J Orthop Surg. 2012;20(1):75–7. https://doi.org/10.1177/230949901202000115.

    Article  Google Scholar 

  20. Miller DL, Vañó E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. Cardiovasc Intervent Radiol. 2010;33(2):230–9. https://doi.org/10.1007/s00270-009-9756-7.

    Article  PubMed  Google Scholar 

  21. Mewes A, Hensen B, Wacker F, et al. Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg. 2017;12(2):291–305. https://doi.org/10.1007/s11548-016-1480-6.

    Article  PubMed  Google Scholar 

  22. Weldon SM, et al. Communication in the operating theatre. Br J Surg. 2013;100(13):1677–88.

    Article  Google Scholar 

  23. Kagadis GC, et al. Medical imaging displays and their use in image interpretation. Radiographics. 2013;33(1):275–90.

    Article  Google Scholar 

  24. Mewes A, Hensen B, Wacker F, Hansen C. Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg. 2017;12(2):291–305.

    Article  Google Scholar 

  25. Homayoon B, Chung J, Gandhi RT, Liu DM. Early clinical experience with a touchless image navigation interface for the endovascular suite. Minim Invasive Ther Allied Technol. 2019;8:1–8.

    Google Scholar 

  26. Jang J, Tschabrunn CM, Barkagan M, Anter E, Menze B, Nezafat R. Three-dimensional holographic visualization of high-resolution myocardial scar on HoloLens. PLos One. 2018;13(10):e0205188.

    Article  Google Scholar 

  27. Brun H, et al. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2019;20(8):883–8.

    Article  CAS  Google Scholar 

  28. Rynio P, et al. Holographically-guided endovascular aneurysm repair. J Endovasc Ther. 2019;26(4):544–7.

    Article  Google Scholar 

  29. Bruckheimer E, et al. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging. 2016;17:845–9.

    Article  Google Scholar 

  30. Ballocca F, et al. Validation of quantitative 3-dimensional transesophageal echocardiography mitral valve analysis using stereoscopic display. J Cardiothorac Vasc Anesth. 2019;33(3):732–41.

    Article  Google Scholar 

  31. Silva JNA, Southworth M, Raptis C, Silva J. Emerging applications of virtual reality in cardiovascular medicine. JACC Basic Transl Sci. 2018;3(3):420–30.

    Article  Google Scholar 

  32. Kuhlemann I, Kleemann M, Jauer P, Schweikard A, Ernst F. Towards X-ray free endovascular interventions – using HoloLens for on-line holographic visualization. Healthc Technol Lett. 2017;4(5):184–7.

    Article  Google Scholar 

  33. Meulstee JW, et al. Toward holographic-guided surgery. Surg Innov. 2019;26(1):86–94.

    Article  Google Scholar 

  34. Pratt P, Ives M, Lawton G, Simmons J, Radev N, Spyropoulou L, Amiras D. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp. 2018;2:2.

    Article  Google Scholar 

  35. Mitsuno D, Ueda K, Hirota Y, Ogino M. Effective application of mixed reality device HoloLens: simple manual alignment of surgical field and holograms. Plast Reconstr Surg. 2019;143(2):647–51.

    Article  CAS  Google Scholar 

  36. Incekara F, et al. Clinical feasibility of a wearable mixed-reality device in neurosurgery. World Neurosurg. 2018;118:e422–7.

    Article  Google Scholar 

  37. Park B, et al. Registration of 3D holographic models of patient imaging onto a CT grid: assessment of manual and automatic techniques using HoloLens. JVIR. 2019. Abstract No. 289.

    Google Scholar 

  38. Li Y, et al. A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside. J Neurosurg. 2018;131(5):1–8.

    Google Scholar 

  39. Liebmann F, et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens. Int J Comput Assist Radiol Surg. 2019;14(7):1157–65.

    Article  Google Scholar 

  40. Hajek J, et al. Closing the calibration loop: an inside-out-tracking paradigm for augmented reality in orthopedic surgery. In: Proceedings of the conference on medical image computing and computer assisted intervention, 2018. p. 1–8.

    Google Scholar 

  41. Frantz T, Jansen B, Duerinck J, Vandemeulebroucke J. Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation. Healthc Technol Lett. 2018;5(5):221–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Ruijters, D., Flexman, M.L. (2021). Augmented Reality for Interventional Procedures. In: Atallah, S. (eds) Digital Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-49100-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49100-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49099-7

  • Online ISBN: 978-3-030-49100-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics