Abstract
Augmented reality now allows us to see the real world superimposed with live data and 3D medical imagery needed to guide precision image-guided interventional therapy. Physicians performing advanced interventional procedures, in an ideal state, are able to keep their hands on the instruments and their eyes on the patient and to access contextually relevant digital information at any given point in time. Data should be displayed as a 3D hologram when required and in an ergonomically optimal size and position. Perhaps even more importantly, rather than having to shift focus away from the patient to press physical buttons to operate interventional equipment, an AR-powered interventional suite can allow control of the entire interventional system and environment with voice recognition, eye tracking, and advanced intuitive gestures. In this chapter, we will describe several examples of such augmented reality applications and hardware. The properties, benefits, and challenges of such applications will also be discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kobeiter H, Nahum J, Becquemin J-P. Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation. 2011;124:e280–2.
Ruijters D, Homan R, Mielekamp P, van de Haar P, Babic D. Validation of 3D multimodality roadmapping in interventional neuroradiology. Phys Med Biol. 2011;56(16):5335–54. https://doi.org/10.1088/0031-9155/56/16/017.
Blanc R, Seiler A, Robert T, et al. Multimodal angiographic assessment of cerebral arteriovenous malformations: a pilot study. J Neurointerv Surg. 2015;7:841–7. https://doi.org/10.1136/neurintsurg-2014-011402.
Wink O, Hecht HS, Ruijters D. Coronary computed tomographic angiography in the cardiac catheterization laboratory: current applications and future developments, cardiology clinics, Advances in coronary angiography, S. J Chen and J D Carroll, 2009;27(3):513–29. https://doi.org/10.1016/j.ccl.2009.04.002.
Goreczny S, Dryzek P, Moszura T. Novel 3-dimensional image fusion software for live guidance of percutaneous pulmonary valve implantation. Circ Cardiovasc Interv. 2016;9(7). https://doi.org/10.1161/CIRCINTERVENTIONS.116.003711.
Kliger C, Jelnin V, Sharma S, Panagopoulos G, Einhorn BN, Kumar R, Cuesta F, Maranan L, Kronzon I, Carelsen B, Cohen H, Perk G, van den Boomen R, Sahyoun C, Ruiz CE. CT angiography-fluoroscopy fusion imaging for percutaneous transapical access. JACC Cardiovasc Imaging. 2014;7:169–77. https://doi.org/10.1016/j.jcmg.2013.10.009.
Gupta A, Grunhagen T. Live MR angiographic roadmapping for uterine artery embolization: a feasibility study. J Vasc Interv Radiol. 2013;24(11):1690–7. https://doi.org/10.1016/j.jvir.2013.07.013.
Spelle L, Ruijters D, Babic D, Homan R, Mielekamp P, Guillermic J, Moret J. First clinical experience in applying XperGuide in embolization of jugular paragangliomas by direct intratumoral puncture. Int J Comput Assist Radiol Surg. 2009;4(6):527–33. https://doi.org/10.1007/s11548-009-0370-6.
Elmi-Terander A, Skulason H, Söderman M, Racadio J, Homan R, Babic D, van der Vaart N, Nachabe R. Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a spine cadaveric feasibility and accuracy study. Spine (Phila Pa 1976). 2016;41(21):E1303–11.
Racadio JM, Nachabe R, Homan R, Schierling R, Racadio JM, Babić D. Augmented reality on a C-Arm system: a preclinical assessment for percutaneous needle localization. Radiology. 281(1):249–55. https://doi.org/10.1148/radiol.2016151040.
Gafoor S, Schulz P, Heuer L, Matic P, Franke J, Bertog S, Reinartz M, Vaskelyte L, Hofmann I, Sievert H. Use of EchoNavigator, a novel echocardiography-fluoroscopy overlay system, for transseptal puncture and left atrial appendage occlusion. J Interv Cardiol. 2015;28:215–7. https://doi.org/10.1111/joic.12170.
Balzer J, Zeus T, Hellhammer K, Veulemans V, Eschenhagen S, Kehmeier E, Meyer C, Rassaf T, Kelm M. Initial clinical experience using the EchoNavigator(®)-system during structural heart disease interventions. World J Cardiol. 2015;7(9):562–70. https://doi.org/10.4330/wjc.v7.i9.562.
Kim BH, Koh Y-S, Lee K-Y, Chung W-B. Three-dimensional EchoNavigator system guided transcatheter closure of paravalvular leakage. J Cardiovasc Imaging. 2019;27(3):227–9. https://doi.org/10.4250/jcvi.2019.27.e30.
Frimerman A, Abergel E, Blondheim DS, Shotan A, Meisel S, Shochat M, Punjabi P, Roguin A. Novel method for real time co-registration of IVUS and coronary angiography. J Interv Cardiol. 2016;29(2) https://doi.org/10.1111/joic.12279.
Piayda K, Kleinebrecht L, Afzal S, Bullens R, ter Horst I, Polzin A, Veulemans V, Dannenberg L, Wimmer AC, Jung C, Bönner F, Kelm M, Hellhammer K, Zeus T. Dynamic coronary roadmapping during percutaneous coronary intervention: a feasibility study. Eur J Med Res. 2018;23:36.
Yabe T, Muramatsu T, Tsukahara R, et al. The impact of percutaneous coronary intervention using the novel dynamic coronary roadmap system. Heart Vessel. 2019. https://doi.org/10.1007/s00380-019-01502-1.
Chen L, Day TW, Tang W, John NW. Recent developments and future challenges in medical mixed reality. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR). 2017.
Chan D, et al. Joint practice guideline for sterile technique during vascular and interventional radiology procedures: from the Society of Interventional Radiology, Association of perioperative Registered Nurses, and Association of Radiologic and Imaging Nursing, for the Society of Interventional Radiology (Wael Saad, MD, Chair), Standards of Practice Committee, and Endorsed by the Cardiovascular Interventional Radiological Society of Europe and the Canadian Interventional Radiology Association. J Vasc Interv Radiol. 2012;23:1603–12.
Butt U, Saleem U, Yousuf K, El-Bouni T, Chambler A, Eid AS. Infection risk from surgeons’ eyeglasses. J Orthop Surg. 2012;20(1):75–7. https://doi.org/10.1177/230949901202000115.
Miller DL, Vañó E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. Cardiovasc Intervent Radiol. 2010;33(2):230–9. https://doi.org/10.1007/s00270-009-9756-7.
Mewes A, Hensen B, Wacker F, et al. Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg. 2017;12(2):291–305. https://doi.org/10.1007/s11548-016-1480-6.
Weldon SM, et al. Communication in the operating theatre. Br J Surg. 2013;100(13):1677–88.
Kagadis GC, et al. Medical imaging displays and their use in image interpretation. Radiographics. 2013;33(1):275–90.
Mewes A, Hensen B, Wacker F, Hansen C. Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg. 2017;12(2):291–305.
Homayoon B, Chung J, Gandhi RT, Liu DM. Early clinical experience with a touchless image navigation interface for the endovascular suite. Minim Invasive Ther Allied Technol. 2019;8:1–8.
Jang J, Tschabrunn CM, Barkagan M, Anter E, Menze B, Nezafat R. Three-dimensional holographic visualization of high-resolution myocardial scar on HoloLens. PLos One. 2018;13(10):e0205188.
Brun H, et al. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2019;20(8):883–8.
Rynio P, et al. Holographically-guided endovascular aneurysm repair. J Endovasc Ther. 2019;26(4):544–7.
Bruckheimer E, et al. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging. 2016;17:845–9.
Ballocca F, et al. Validation of quantitative 3-dimensional transesophageal echocardiography mitral valve analysis using stereoscopic display. J Cardiothorac Vasc Anesth. 2019;33(3):732–41.
Silva JNA, Southworth M, Raptis C, Silva J. Emerging applications of virtual reality in cardiovascular medicine. JACC Basic Transl Sci. 2018;3(3):420–30.
Kuhlemann I, Kleemann M, Jauer P, Schweikard A, Ernst F. Towards X-ray free endovascular interventions – using HoloLens for on-line holographic visualization. Healthc Technol Lett. 2017;4(5):184–7.
Meulstee JW, et al. Toward holographic-guided surgery. Surg Innov. 2019;26(1):86–94.
Pratt P, Ives M, Lawton G, Simmons J, Radev N, Spyropoulou L, Amiras D. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp. 2018;2:2.
Mitsuno D, Ueda K, Hirota Y, Ogino M. Effective application of mixed reality device HoloLens: simple manual alignment of surgical field and holograms. Plast Reconstr Surg. 2019;143(2):647–51.
Incekara F, et al. Clinical feasibility of a wearable mixed-reality device in neurosurgery. World Neurosurg. 2018;118:e422–7.
Park B, et al. Registration of 3D holographic models of patient imaging onto a CT grid: assessment of manual and automatic techniques using HoloLens. JVIR. 2019. Abstract No. 289.
Li Y, et al. A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside. J Neurosurg. 2018;131(5):1–8.
Liebmann F, et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens. Int J Comput Assist Radiol Surg. 2019;14(7):1157–65.
Hajek J, et al. Closing the calibration loop: an inside-out-tracking paradigm for augmented reality in orthopedic surgery. In: Proceedings of the conference on medical image computing and computer assisted intervention, 2018. p. 1–8.
Frantz T, Jansen B, Duerinck J, Vandemeulebroucke J. Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation. Healthc Technol Lett. 2018;5(5):221–5.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gupta, A., Ruijters, D., Flexman, M.L. (2021). Augmented Reality for Interventional Procedures. In: Atallah, S. (eds) Digital Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-49100-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-49100-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49099-7
Online ISBN: 978-3-030-49100-0
eBook Packages: MedicineMedicine (R0)