[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neural Hybrid Recommender: Recommendation Needs Collaboration

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2019)

Abstract

In recent years, deep learning has gained an indisputable success in computer vision, speech recognition, and natural language processing. After its rising success on these challenging areas, it has been studied on recommender systems as well, but mostly to include content features into traditional methods. In this paper, we introduce a generalized neural network-based recommender framework that is easily extendable by additional networks. This framework named NHR, short for Neural Hybrid Recommender allows us to include more elaborate information from the same and different data sources. We have worked on item prediction problems, but the framework can be used for rating prediction problems as well with a single change on the loss function. To evaluate the effect of such a framework, we have tested our approach on benchmark and not yet experimented datasets. The results in these real-world datasets show the superior performance of our approach in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., Goldberg, Y.: Fine-grained analysis of sentence embeddings using auxiliary prediction tasks. arXiv preprint arXiv:1608.04207 (2016)

  2. Bayer, I., He, X., Kanagal, B., Rendle, S.: A generic coordinate descent framework for learning from implicit feedback. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1341–1350. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  3. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)

    Google Scholar 

  4. Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. arXiv preprint arXiv:1511.06443 (2015)

  5. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of the 24th International Conference on World Wide Web, pp. 278–288. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  6. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(Feb), 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

  8. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)

    Google Scholar 

  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  10. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558. ACM (2016)

    Google Scholar 

  11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE (2008)

    Google Scholar 

  12. Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 233–240. ACM (2016)

    Google Scholar 

  13. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)

    Google Scholar 

  14. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 811–820. ACM (2015)

    Google Scholar 

  15. Lison, P., Tiedemann, J.: Opensubtitles 2016: extracting large parallel corpora from movie and TV subtitles. In: Proceedings of the 10th International Conference on Language Resources and Evaluation (2016)

    Google Scholar 

  16. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  17. Song, W., et al.: Autoint: automatic feature interaction learning via self-attentive neural networks. arXiv preprint arXiv:1810.11921 (2018)

  18. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)

    Google Scholar 

  19. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: Proceedings of the ADKDD 2017, p. 12. ACM (2017)

    Google Scholar 

  20. Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: Towards universal paraphrastic sentence embeddings. arXiv preprint arXiv:1511.08198 (2015)

Download references

Acknowledgements

This study is part of the research project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project No: 5170032). This work was also supported by the Research Fund of the Istanbul Technical University (Project Number: BAP-40737). We would like to thank Kariyer.Net for providing us with the online recruiting dataset used in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezgi Yıldırım .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yıldırım, E., Azad, P., Öğüdücü, Ş.G. (2020). Neural Hybrid Recommender: Recommendation Needs Collaboration. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2019. Lecture Notes in Computer Science(), vol 11948. Springer, Cham. https://doi.org/10.1007/978-3-030-48861-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48861-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48860-4

  • Online ISBN: 978-3-030-48861-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics