[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Code Reusability and Transparency of Agent-Based Modeling: A Review from a Cyberinfrastructure Perspective

  • Chapter
  • First Online:
High Performance Computing for Geospatial Applications

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 23))

Abstract

Agent-based models have been increasingly applied to the study of space-time dynamics in real-world systems driven by biophysical and social processes. For the sharing and communication of these models, code reusability and transparency play a pivotal role. In this chapter, we focus on code reusability and transparency of agent-based models from a cyberinfrastructure perspective. We identify challenges of code reusability and transparency in agent-based modeling and suggest how to overcome these challenges. As our findings reveal, while the understanding of and demands for code reuse and transparency are different in various domains, they are inherently related, and they contribute to each step of the agent-based modeling process. While the challenges to code development are daunting, continually evolving cyberinfrastructure-enabled computing technologies such as cloud computing, high-performance computing, and parallel computing tend to lower the computing-level learning curve and, more importantly, facilitate code reuse and transparency of agent-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 105.00
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 131.50
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36.

    Google Scholar 

  • An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. (2005). Exploring complexity in a human–environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers, 95(1), 54–79.

    Google Scholar 

  • An, L., Mak, J., Yang, S., Lewison, R., Stow, D. A., Chen, H. L., et al. (2020). Cascading impacts of payments for ecosystem services in complex human-environment systems. Journal of Artificial Societies and Social Simulation (JASSS), 23(1), 5.

    Google Scholar 

  • An, L., Zvoleff, A., Liu, J., & Axinn, W. (2014). Agent-based modeling in coupled human and natural systems (CHANS): Lessons from a comparative analysis. Annals of the Association of American Geographers, 104(4), 723–745.

    Google Scholar 

  • Atkins, D. E., Droegemeie, K. K., Feldman, S. I., Garcia-Molina, H., Klein, M. L., Messerschmitt, D. G., Messina, P., Ostriker, J. P., & Wright, M. H. (2003). Revolutionizing science and engineering through Cyberinfrastructure: Report of the National Science Foundation blue-ribbon advisory panel on Cyberinfrastructure.

    Google Scholar 

  • Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach. Ecological Modelling, 280, 117–128.

    Google Scholar 

  • Becher, M. A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P. J., & Osborne, J. L. (2014). BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. Journal of Applied Ecology, 51(2), 470–482.

    Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation: Automata-based modeling of urban phenomena. Hoboken, NJ: Wiley.

    Google Scholar 

  • Bennett, D. A. (1997). A framework for the integration of geographical information systems and modelbase management. International Journal of Geographical Information Science, 11(4), 337–357.

    Google Scholar 

  • Bennett, D. A., & Tang, W. (2006). Modelling adaptive, spatially aware, and mobile agents: Elk migration in Yellowstone. International Journal of Geographical Information Science, 20(9), 1039–1066.

    Google Scholar 

  • Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W. (2005). Spatial process and data models: Toward integration of agent-based models and GIS. Journal of Geographic Systems, 7(1), 1–23.

    Google Scholar 

  • Epstein, J. M., & Axtell, I. (1996). Growing artificial societies: Social science from the bottom up. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Frakes, W., & Terry, C. (1996). Software reuse: Metrics and models. ACM Computing Surveys (CSUR), 28(2), 415–435.

    Google Scholar 

  • Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE Transactions on Software Engineering, 31(7), 529–536.

    Google Scholar 

  • Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S., et al. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139.

    Google Scholar 

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1), 115–126.

    Google Scholar 

  • Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768.

    Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991. https://doi.org/10.1126/science.1116681

    Article  Google Scholar 

  • Hauke, J., Lorscheid, I., & Meyer, M. (2017). Recent development of social simulation as reflected in JASSS between 2008 and 2014: A citation and co-citation analysis. Journal of Artificial Societies and Social Simulation, 20(1).

    Google Scholar 

  • Horni, A., Nagel, K., & Axhausen, K. W. (2016). The multi-agent transport simulation MATSim: Ubiquity press London.

    Google Scholar 

  • Janssen, M. A. (2017). The practice of archiving model code of agent-based models. Journal of Artificial Societies and Social Simulation, 20(1), 1–2.

    Google Scholar 

  • Jin, X., Robinson, K., Lee, A., Polhill, J. G., Pritchard, C., & Parker, D. C. (2017). A prototype cloud-based reproducible data analysis and visualization platform for outputs of agent-based models. Environmental Modelling & Software, 96, 172–180.

    Google Scholar 

  • Kang, J.-Y., Aldstadt, J., Michels, A., Vandewalle, R., & Wang, S. (2019). CyberGIS-Jupyter for spatially explicit agent-based modeling: a case study on influenza transmission. In: Paper presented at the proceedings of the 2nd ACM SIGSPATIAL international workshop on GeoSpatial simulation.

    Google Scholar 

  • Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., & Fotheringham, A. S. (2019). Reproducibility and replicability in geographical analysis. Geographical Analysis.

    Google Scholar 

  • Kim, I.-H., & Tsou, M.-H. (2013). Enabling digital earth simulation models using cloud computing or grid computing–two approaches supporting high-performance GIS simulation frameworks. International Journal of Digital Earth, 6(4), 383–403.

    Google Scholar 

  • Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., et al. (2007a). Complexity of coupled human and natural systems. Science, 317(5844), 1513–1516.

    Google Scholar 

  • Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., et al. (2007b). Coupled human and natural systems. Ambio: A Journal of the Human Environment, 36(8), 639–649.

    Google Scholar 

  • Lorscheid, I., Berger, U., Grimm, V., & Meyer, M. (2019). From cases to general principles: A call for theory development through agent-based modeling. Ecological Modelling, 393, 153–156.

    Google Scholar 

  • Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (draft). NIST Special Publication, 800(145), 7.

    Google Scholar 

  • Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., et al. (2013). Describing human decisions in agent-based models–ODD+ D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48.

    Google Scholar 

  • Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990–2014: Spatially-explicit Bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 66.

    Google Scholar 

  • Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S., Breckler, S., et al. (2015). Promoting an open research culture. Science, 348(6242), 1422–1425.

    Google Scholar 

  • NRC. (2014). Advancing land change modeling: Opportunities and research requirements. Washington, DC: National Academies Press.

    Google Scholar 

  • NSF. (2007). Cyberinfrastructure vision for 21st century discovery. In: Report of NSF council, Retrieved from http://www.nsf.gov/od/oci/ci_v5.pdf.

  • O'Sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A., & Bone, C. (2016). Strategic directions for agent-based modeling: Avoiding the YAAWN syndrome. Journal of Land Use Science, 11(2), 177–187. https://doi.org/10.1080/1747423X.2015.1030463

    Article  Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.

    Google Scholar 

  • Parry, H. R., & Bithell, M. (2012). Large scale agent-based modelling: A review and guidelines for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 271–308). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. E. (1991). Object-oriented modeling and design (Vol. 199). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Salecker, J., Sciaini, M., Meyer, K. M., & Wiegand, K. (2019). The nlrx R package: A next-generation framework for reproducible NetLogo model analyses. Methods in Ecology and Evolution, 10, 1854–1863.

    Google Scholar 

  • Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: A strategy for the future. Trends in Ecology & Evolution, 25(8), 479–486.

    Google Scholar 

  • Schulze, J., Müller, B., Groeneveld, J., & Grimm, V. (2017). Agent-based Modelling of social-ecological systems: Achievements, challenges, and a way forward. Journal of Artificial Societies and Social Simulation, 20(2), 1–8.

    Google Scholar 

  • Shook, E., Wang, S., & Tang, W. (2013). A communication-aware framework for parallel spatially explicit agent-based models. International Journal of Geographical Information Science, 27(11), 2160–2181.

    Google Scholar 

  • Shook, E., Wren, C., Marean, C. W., Potts, A. J., Franklin, J., Engelbrecht, F., O'Neal, D., Janssen, M., Fisher, E., & Hill, K. (2015). Paleoscape model of coastal South Africa during modern human origins: progress in scaling and coupling climate, vegetation, and agent-based models on XSEDE. In: Paper presented at the proceedings of the 2015 XSEDE conference: Scientific advancements enabled by enhanced Cyberinfrastructure.

    Google Scholar 

  • Sommerville, I. (2016). Software engineering (10th ed.). Essex, UK: Pearson Education.

    Google Scholar 

  • Tang, W. (2008). Simulating complex adaptive geographic systems: A geographically aware intelligent agent approach. Cartography and Geographic Information Science, 35(4), 239–263.

    Google Scholar 

  • Tang, W. (2013). Accelerating agent-based modeling using graphics processing units. In X. Shi, V. Kindratenko, & C. Yang (Eds.), Modern accelerator technologies for geographic information science (pp. 113–129). New York: Springer.

    Google Scholar 

  • Tang, W., Bennett, D., & Wang, S. (2011). A parallel agent-based model of land use opinions. Journal of Land Use Science, 6(2–3), 121–135.

    Google Scholar 

  • Tang, W., & Bennett, D. A. (2010). Agent-based modeling of animal movement: A review. Geography Compass, 4(7), 682–700.

    Google Scholar 

  • Tang, W., & Bennett, D. A. (2011). Parallel agent-based modeling of spatial opinion diffusion accelerated using graphics processing units. Ecological Modelling, 222(19), 3605–3615.

    Google Scholar 

  • Tang, W., & Jia, M. (2014). Global sensitivity analysis of large agent-based modeling of spatial opinion exchange: A heterogeneous multi-GPU acceleration approach. Annals of Association of American Geographers, 104(3), 485–509.

    Google Scholar 

  • Tang, W., & Wang, S. (2009). HPABM: A hierarchical parallel simulation framework for spatially-explicit agent-based models. Transactions in GIS, 13(3), 315–333.

    Google Scholar 

  • Tang, W., & Yang, J. (2020). Agent-based land change modeling of a large watershed: Space-time locations of critical threshold. Journal of Artificial Societies and Social Simulation, 23(1), 15.

    Google Scholar 

  • Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from the bottom up. Artificial Life, 8(1), 55–82.

    Google Scholar 

  • Tesfatsion, L. (2017). Modeling economic systems as locally-constructive sequential games. Journal of Economic Methodology, 24(4), 384–409.

    Google Scholar 

  • Tesfatsion, L. (2020). Agent-based computational economics: homepage. http://www2.econ.iastate.edu/tesfatsi/ace.htm.

  • Thiele, J. C., & Grimm, V. (2015). Replicating and breaking models: Good for you and good for ecology. Oikos, 124(6), 691–696.

    Google Scholar 

  • Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., et al. (2014). XSEDE: Accelerating scientific discovery. Computing in Science & Engineering, 16(5), 62–74.

    Google Scholar 

  • Vandewalle, R., Kang, J.-Y., Yin, D., & Wang, S. (2019). Integrating CyberGIS-Jupyter and spatial agent-based modelling to evaluate emergency evacuation time. In: Paper presented at the proceedings of the 2nd ACM SIGSPATIAL international workshop on GeoSpatial simulation.

    Google Scholar 

  • Vincenot, C. E. (2018). How new concepts become universal scientific approaches: Insights from citation network analysis of agent-based complex systems science. Proceedings of the Royal Society of London B, 285(1874), 20172360.

    Google Scholar 

  • Waddell, P., Borning, A., Ševčíková, H., & Socha, D. (2006). Opus (the open platform for urban simulation) and UrbanSim 4. In: Paper presented at the proceedings of the 2006 international conference on digital government research, San Diego, California, USA.

    Google Scholar 

  • Wilensky, U., & Evanston, I. (1999). NetLogo: Center for connected learning and computer-based modeling. Evanston, IL: Northwestern University.

    Google Scholar 

  • Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., et al. (2014). Best practices for scientific computing. PLoS Biology, 12(1), e1001745.

    Google Scholar 

  • Yang, C., & Huang, Q. (2013). Spatial cloud computing: A practical approach. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Zvoleff, A., & An, L. (2014). The effect of reciprocal connections between demographic decision making and land use on decadal dynamics of population and land-use change. Ecology and Society, 19(2).

    Google Scholar 

Download references

Acknowledgments

This chapter was partially sponsored by USA National Science Foundation through the Method, Measure & Statistics (MMS) and the Geography and Spatial Sciences (GSS) programs (BCS #1638446). We also thank the comments and input from all the participants of the ABM Code Reusability and Transparency Workshop at the ABM 17 Symposium (http://complexities.org/ABM17/). Special thanks go to Drs. Michael Barton and Marco Janssen for leading the oral discussion of this symposium session. The authors owe thanks to the reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, W. et al. (2020). Code Reusability and Transparency of Agent-Based Modeling: A Review from a Cyberinfrastructure Perspective. In: Tang, W., Wang, S. (eds) High Performance Computing for Geospatial Applications. Geotechnologies and the Environment, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-47998-5_7

Download citation

Publish with us

Policies and ethics